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Abstract. A mechanical model of spacetime was introduced at a prior conference for describing 
perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension.  
In the introductory presentation, it was shown that equations governing metric dynamics provide 
an alternate geometric formulation for quantum mechanics.  Analogies were drawn between 
micro-perturbations in spacetime and the wave equations of quantum mechanics.  At a second 
conference, the model was extended to include gravity by proposing an anisotropic coupling 
tensor to relate stress-energy and curvature instead of the scalar Einstein constant. 
 
In this presentation, the model is applied to cosmology.  It is shown that the tensor equations 
describing spacetime with surface tension can be rearranged such that they contain components 
resembling dark matter and dark energy.  This form of the model is compared with galaxy 
rotation curves.  It is shown that surface tension causes flattening of rotation curves.  The model 
is also evaluated using Friedman Robertson Walker metrics.  It is shown that surface tension 
tends toward a flat, homogeneous, isotropic universe geometry.  It is suggested that dark matter 
and dark energy are the cosmological manifestations of surface tension in spacetime. 

1. Introduction 
Many physicists believe that gravity and quantum mechanics eventually will be unified under a single 
theory.  Earlier works on unification aimed to “geometrize” the electromagnetic field.  Some 
approaches connected an additional linear form to the metric (Weyl), expanded the dimensionality of 
space (Kaluza), suggested an asymmetric Ricci Tensor (Eddington), added an antisymmetric tensor to 
the metric (Bach, Einstein), and replaced the metric by a 4-bein field (Einstein) [1].  More recent 
approaches to unification include string theory and M-theory [2,3], stochastic mechanics [4], 
geometric field theory of electrodynamics [5,6,7], and many others.   

The approach being evaluated here began by trying to answer a simple question, how would nature 
construct small particles from the geometry of spacetime itself?  The proposed answer draws upon 
known concepts from physical chemistry to introduce surface tension to spacetime [8-12].  From 
everyday experiences, we know that surface tension has a predominant role in the physics of small 
objects.  In a similar way, it was argued in [8-12] that incorporating surface tension into general 
relativity may help build a bridge to quantum mechanics.   
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The proposed introduction of surface tension to spacetime [8-12] can be summarized by the following 
arguments:  1.) thermodynamics of surface tension requires negative terms in the spatial diagonal of 
the stress energy tensor, and 2.) both gravitational and high-energy fields can be combined into one 
geometry by replacing the traditional gravitational constant by an anisotropic invertible coupling 
tensor.  Making these changes to general relativity allows for the creation of various small particles 
and quantizes spacetime according to Plank’s constant.  The wave equations for these systems 
resemble basic field equations in quantum mechanics wherein interpreted probability waves are 
replaced by strain and displacement fields in the fabric of spacetime itself. 

The question addressed in this paper is how the proposed changes to general relativity would affect 
cosmology.  Simple algebraic manipulation of surface tension tensor equations produces a form of 
general relativity that resembles two of the most widely accepted and yet unexplained aspects of 
mainstream cosmology, dark matter and dark energy.  Many are working to explain dark matter and 
dark energy phenomena through modifications to the equations of general relativity (see for example 
[13-17]).  Surface tension of spacetime provides an alternative explanation for dark matter and dark 
energy. 

This paper summarizes the surface tension model of spacetime [8-12] including the underlying 
thermodynamics and the postulated stress energy tensor with negative spatial terms.  It is shown that 
the stress energy tensor can be rearranged in a way that has terms resembling dark matter and dark 
energy in cosmology.  The rearranged term for dark matter differs from ordinary mass in that it has a 
scalar potential energy field and would yield flat velocity curves at astronomical distances.  The 
rearranged term for dark energy is a negative cosmological constant that produces a flat and expanding 
spacetime in FRW cosmology. 

2. Geometry 
A coordinate system is created by an observer in order to record the position of objects, particles, or 
events as well as their mass, velocity, electric charge, magnetic field, and other properties relative to 
the observer.  A coordinate system is a record of position in spacetime relative to a single clock. 

Making an observation creates a map between the observer and different points or events in a 
manifold.  Other observers create different maps of the same manifold relative to their own coordinate 
system with their own clock.  Relativity teaches that the coordinate systems of all observers are 
Lorentz transformations of the same manifold.  Said another way, coordinate frames at different 
velocities are rotations by an imaginary angle of the same tensor equations. 

It is well known that observers disagree on simultaneity of events.  For this reason, the word 
“simultaneous” has become near synonymous with misunderstanding relativity.  This bias is so great 
that the simultaneity of an observer (coordinate system with one clock) with events and objects in its 
present time is approached with skepticism.  However, the simultaneity of energy, matter, and events 
at an instant of time IS the very nature of a coordinate system comoving with a single clock.  The 
concept of one clock per observer is important to this work because, as is discussed here in detail, it is 
the simultaneity of energy in any arbitrary reference frame that manifestly causes spacetime surface 
tension. 
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Let us define an observer’s 4-dimensional coordinate system by 𝑥ఓ  ∈  𝔐, where 𝑥ఓ ൌ ሺ𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ 
and 𝑥଴ ൌ 𝑓ሺ𝑡ሻ.   A plot of matter and energy as “seen” by an arbitrary observer is depicted in Figure 1.  
Each point represents some concentration of matter or energy like an atom, dust grain, star, or galaxy – 
depending on scale.  Each point may be moving at a different velocity within the coordinate system.  
Matter and energy are dispersed through the observer’s space and confined to an infinitesimally thin 
instant of time as read on the observer’s clock upon making an observation.        

 

Figure 1.  Four-Dimensional Depiction of Matter and Energy as “Seen” in by an Arbitrary Observer 

One of the three surfaces in time and two coordinates of space from Figure 1 is depicted in Figure 2.  
According to general relativity, the observer’s coordinate system would have some curvature caused 
by the density and distribution of mass energy.  Thus, the surface in Figure 2 is shown to be undulating 
and irregular.   

 

Figure 2.  Spatial 3-Surface Exhibiting Curvature due to Energy Contained Therein 
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3. Surface Tension 

A fundamental principle of physical chemistry is that a surface of energy must have surface tension [18].  
Physical chemists [18] use a very simple mechanical analogy to explain this principle.  Consider the 
mechanical model in Figure 3.  The model consists of a wire frame window with one moveable side and 
some density of stored surface energy, Ϙ, dispersed across the opening.  In thermodynamic terms, the 
window represents quantum fields in the present that can affect the probability of future states.  The fact 
that these states are organized in an increment of coordinate time is a higher order (lower entropy) than 
complete temporal dispersion (loss of causality, faster than light travel, future states affecting the 
present).  The energy required to maintain this lower entropy is stored surface energy.  The work done 
on the system by opening the window some discrete amount is given by, 

𝑊𝑜𝑟𝑘 ൌ  Ϙ𝑑𝐴 

which for this system with one moveable side can be written, 

𝑊𝑜𝑟𝑘 ൌ  Ϙ𝐿𝑑𝑥 

where 𝑑𝐴 ൌ 𝐿𝑑𝑥 represents the additional surface area.  Now, given the definition of work is force 
times length, it appears that Ϙ in the second formulation is a tension force per unit length or surface 
tension.  Thus, surface tension and surface energy are mechanically equivalent concepts in the physical 
chemistry of surfaces.  This postulate holds regardless of dimensionality of the surface.  It holds even 
for a spatial 3-surface at an instant of coordinate time. 

 

 

Figure 3.  Surface Energy Stretched Across a Wire Frame Window with One Moveable Side 

The simple model used by physical chemists for a two-dimensional surface can be mathematically 
adapted to a 3-surface in relativity.  The approach taken is to borrow techniques from continuum 
mechanics which build a set of coordinate-independent tensor equations to describe the configuration 
manifold, stress energy states, and the rate of deformation of the energy 3-surface.  An infinitesimal 
element (a discrete point) of 3-surface from Figure 2 is enlarged in Figure 4.  The infinitesimal element’s 
frame (also called material coordinates or tangent space) can be described by coordinates, 𝑦ఔ.  The frame 
of the infinitesimal point is mapped to the observer’s coordinates, 𝑥ఔ, by the four velocity, u, with 
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components, 𝑢ఔ ൌ  
డ௫ഌ

డ௦
, where s is the spacetime separation between observer and the point (particle or 

event).   

Figure 4.  Infinitesimal Element of Spacetime with Matter-Energy Density, P, and Surface Tension, Ϙ 

The stress energy tensor for a point in a spacetime continuum in the principle frame of the tangent space 
at the infinitesimal element point is, 

𝑇ఓఔ ൌ  ቎

𝑑𝑃    0
0 െϘ

     0     0 
     0     0 

   0      0  
   0      0  

െϘ   0
    0  െϘ

቏           ሺ1ሻ 

Surface tension, Ϙ, is a tensor field, Ϙ௜௝, whose components may vary.  However, in the case of spatially 

flat fluid space, where torsion and shear stresses (off diagonal spatial terms) are zero, then surface 
tension, Ϙ, is a constant.  The spatially flat fluid space with uniform surface tension is assumed herein 
to be consistent with usual assumptions of physical chemistry of surfaces, unless otherwise noted. 

The total energy, W, of a three-surface is, 

𝑊 ൌ඾ െϘ𝑑𝜎
ఙ

          ሺ2ሻ 

From the definition of work, the stored energy of a three volume is, 

𝑊 ൌ ර 𝑑𝑃𝑑𝑉
௏

          ሺ3ሻ 

When combined together through conservation of work and energy, (2) and (3) become, 

඾ െϘ𝑑𝜎
ఙ

ൌ ර 𝑑𝑃𝑑𝑉
௏

          ሺ4ሻ 

According to the divergence theorem, 
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඾ Ϙ𝑑𝜎
ఙ

ൌ ර ሺ∇ ∙ Ϙሻ
௏

𝑑𝑉          ሺ5ሻ 

which means by direct comparison of (4) and (5), 

∇ ∙ Ϙ ൌ െ𝑑𝑃          ሺ6ሻ 

Differential temporal pressure (mass energy) is the spatial divergence of surface tension. 

This line of logic is somewhat analogous to the treatment of corpuscular, capillary, and meniscus 
geometry in physical chemistry of surfaces.  An example of corpuscular geometry is shown in Figure 5.  
For two-dimensional curved surfaces, surface tension acts against differential surface pressure, dP. 

Ϙ 2𝜋𝑅 ൌ 𝑑𝑃 𝜋𝑅ଶ 

2Ϙ
𝑅
ൌ 𝑑𝑃 

From this analogy, one can intuitively derive a similar relationship for spatial three-surfaces intrinsic in 
time,  

Ϙ 4𝜋𝑅ଶ ൌ 𝑑𝑃 
4
3
𝜋𝑅ଷ 

3Ϙ
𝑅
ൌ 𝑑𝑃          ሺ7ሻ 

Figure 5.  Corpuscle Analog of the Divergence Theorem in Physical Chemistry of Surfaces 

4. Unit Transformations 

Work in general relativity is generally performed in units where cൌ1.  Consider the proper 4-
dimensional coordinate system of 𝑥ఓ  ∈  𝔐, where 𝑥ఓ ൌ ሺ𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ and 𝑥଴ ൌ 𝑐𝑡.  In order for the 
laboratory observer to unravel the units of this coordinate system so that they may use using a common 
chronometer, the time-time term of the stress energy tensor should be multiplied by 𝑐ଶ.  The time-space 
components in the first column and top row of the stress energy tensor should be multiplied by c and the 

2-D Surface in 3-Space 

3-D Surface in 4-Space 
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spatial components by 1.  Thus, a proper conversion of units is accomplished by the coordinate 
transformation,  

𝑇′ఓఔ
൫௫ᇱబୀ௧൯

ൌ  ሺ𝐶ఓఔሻ ◦ ሺ𝑇ఓఔ
൫௫బୀ௖௧൯

ሻ 

where 𝑇ఓఔ
൫௫బୀ௖௧൯

 is the stress energy tensor in c=1 units, 𝑇ᇱఓఔ
൫௫ᇱబୀ௧൯

 is the prime stress energy tensor in 

laboratory units, and 

𝐶ఓఔ ൌ ൦

𝑐ଶ 𝑐
𝑐  1

   𝑐 𝑐
1 1

𝑐  1
𝑐  1

   1    1
   1    1

൪ 

is the coordinate transformation.  In this notation the symbol ◦ indicates the Hadamard product which is 
a term-by-term or point-wise product.  To those accustom to Einstein notation, this type of coordinate 
transformation might appear inappropriate, because there is an imbalance of dependent indices.  When 
taking the Hadamard product, Einstein summation is not implied.  This transformation is legitimate in 
relativity as the speed of light, and hence the basis of transformation, is constant for all reference frames.  
In this work, parentheses are used along with ◦ to indicate the Hadamard product.   

The transformation 𝐶ఓఔ is symmetric.  None of the terms in 𝐶ఓఔ are equal to zero, so it is invertible by 

Hadamard rules and the product ሺ𝐶ఓఔሻ ◦ ሺ𝐶ఓఔሻିଵ is equal to the Hadamard identity matrix, 

቎

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

቏ 

Applying this transformation to both sides of the equation of general relativity modifies units of 𝑇ఓఔ and 

the geometric curvature tensor and is a consistent way to switch back and forth between dimensional 
forms.  Thus, in prime laboratory units, the relationship between surface tension and mass energy (7) is 
given by, 

3Ϙᇱ

𝑅
ൌ
𝑑𝑃′
𝑐ଶ

          ሺ8ሻ 

4.  Dark Matter and Dark Energy 
Simply by adding and subtracting Ϙ from the time-time term, the stress-energy tensor, [1], with surface 
tension can be rewritten as, 

𝑇ఓఔ ൌ  ቎

𝑑𝑃 ൅ Ϙ 0
0 0

0 0
0 0

      0      0
   0   0

0 0
0 0

቏ െ Ϙ𝑔ఓఔ         ሺ9ሻ 
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In this form, surface tension appears as an additional mass term, ൅Ϙ, and a negative cosmological 
constant, -Ϙg𝜇ν.  The additional mass term could be interpreted as “dark matter” and the negative 
cosmological constant as “dark energy” in cosmology applications.  Ordinary luminous matter, dP, and 
“dark matter”, +Ϙ, are interrelated by (6) and (8) of the previous section.  A correspondence between 
luminous matter and dark matter is to be expected.  Eloquent arguments for such a correspondence are 
given in [19]. 

5.  Orbital Velocities 
In this section, the gravitational field around a galaxy or other massive astronomical object is derived 
following similar steps as Albert Einstein’s famous ‘Newton’s Theory as a First Approximation’ [20] 
with the extra rearranged surface tension “dark energy” term, +Ϙ, included.  Suppose that the metric of 
spacetime at some distance, R, from the center of a galaxy differs from flat by a small amount due to a 
gravitational field generated exclusively by matter in the finite region of the galaxy and its corresponding 
surface tension.  If the velocities of stars within and around the galaxy are small as compared with the 
speed of light, then spatial components of general relativity become insignificant and the gravitational 
field is quasi-static.  With these assumptions, the general relativity equivalent of Newton’s law of 
gravitation around a galaxy with surface tension becomes, 

1
𝑐ଶ
𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

ൌ െ
1
2
𝜕𝑔଴଴
𝜕𝑥ఛ

         ሺ10ሻ 

∇ଶ𝑔଴଴ ൌ
8𝜋𝐺
𝑐ଶ

ሺ𝑑𝑃′ ൅ Ϙ′ሻ 

where τ = 1,2,3 and differential temporal pressure, dP, is in units of mass density.  Given the relationship 
(8), the second equation above is replaced by, 

∇ଶ𝑔଴଴ ൌ
8𝜋𝐺
𝑐ଶ

ቆ𝑑𝑃′ ൅
𝑟𝑑𝑃ᇱ

3𝑐ଶ
ቇ          ሺ11ሻ 

From Gauss’ law, 

ර ∇ଶ𝑔଴଴
௏

𝑑𝑉 ൌ ර ሺ∇ ∙ ∇𝑔଴଴ሻ𝑑𝑉 ൌ඾ ∇𝑔଴଴ ∙ 𝑑𝜎
ఙ௏

          ሺ12ሻ 

Substituting (10) and (11) into (12) yields, 

8𝜋𝐺
𝑐ଶ

 න න න ቆ𝑑𝑃′ ൅
𝑟𝑑𝑃ᇱ

3𝑐ଶ
ቇ

ோ

଴

ଶగ

଴

ଶగ

଴
𝑟ଶ𝑆𝑖𝑛𝜑𝑑𝜑𝑑𝜃𝑑𝑟 ൌ െන න

2
𝑐ଶ
𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

𝑅ଶ𝑆𝑖𝑛𝜑𝑑𝜑𝑑𝜃
ଶగ

଴

ଶగ

଴
          ሺ13ሻ 

8𝜋𝐺
𝑐ଶ

 4𝜋න ቆ𝑑𝑃′𝑟ଶ𝑑𝑟 ൅
𝑑𝑃ᇱ

3𝑐ଶ
𝑟ଷቇ

ோ

଴
𝑑𝑟 ൌ െ

8𝜋
𝑐ଶ
𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

𝑅ଶ 

𝐺 4𝜋 ቆ
𝑑𝑃′

3
𝑅 ൅

𝑑𝑃ᇱ

12𝑐ଶ
𝑅ଶቇ ൌ െ

𝑑ଶ𝑥ఛ
𝑑𝑡ଶ
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Let mass density, dP’, equal galaxy mass contained in a sphere of radius R divided by volume of that 
sphere (e.g. dP’ൌ3M/4πR3) and solve (13) to obtain, 

𝐺 4𝜋 ൬
𝑀

4𝜋𝑅ଶ
൅

3𝑀
48𝜋𝑅𝑐ଶ

൰ ൌ െ
𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

 

which reduces to Newton’s equation for gravitational acceleration with surface tension, 

െ𝐺 ൬
𝑀
𝑅ଶ

൅
𝑀

16𝑅𝑐ଶ
൰ ൌ

𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

          ሺ14ሻ 

Note that the second term on the left side of (14) is dimensionless.  See the Discussion section for more 
information on units. 

 

The orbital velocity of stars around a galaxy, v, is related to gravitational acceleration by, 

𝑣ଶ

𝑅
ൌ െ

𝑑ଶ𝑥ఛ
𝑑𝑡ଶ

          ሺ15ሻ 

Hence, from (14) and (15) orbital velocity is given by, 

𝑣 ൌ ඨ𝐺𝑀 ൬
1
𝑅
൅

1
16𝑐ଶ

൰ 

If a galaxy or orbiting system has an axis of rotation at an angle, i, relative to the observer’s line of sight, 
then a correction must be made to the velocity.  The corrected orbital velocity is given by, 

𝑣௥ ൌ sin 𝑖 ඨ𝐺𝑀 ൬
1
𝑅
൅

1
16𝑐ଶ

൰           ሺ16ሻ 

The parameter i is called inclination.  When a galaxy is at an inclination of 0 degrees, the observer’s line 
of sight is directly in-line with the axis of rotation, the galaxy is being viewed “head-on”, none of the 
orbital velocity is towards the observer, and no Doppler velocity difference is measured.  When a galaxy 
is at an inclination of 90 degrees, the axis of rotation is perpendicular to the line of sight, the galaxy is 
being viewed “on-edge”, and Doppler shift measurements provide the correct orbital velocity.  

6.  Galaxy Rotation Curves 
To test the validity of the surface tension model, the predicted orbital velocity from (16) is compared 
with astronomical measurements for three example galaxies.  The first is NGC 2903, an approximately 
30 kpc diameter barred spiral galaxy located about 7,600 kpc from Earth in the constellation Leo.  The 
second is NGC 3198, an approximately 35 kpc diameter barred spiral galaxy located about 13,800 kpc 
from Earth in the constellation Ursa Major.  The final is M31, also known as the Andromeda galaxy, 
Messier 31, or NGC 224, is a 67 kpc diameter barred spiral galaxy located only 779 kpc from Earth in 
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the constellation Andromeda.  Basic properties of these galaxies are shown in Table 1.  For this work, 
orbital velocities from astronomical measurement of Doppler shifts were obtained from [21] for the first 
two galaxies and from [22] for M31. 

Table 1.  Properties of Subject Galaxies 

 

In order to compare predicted orbital velocity from (16) with astronomical measurements, luminous 
matter density of the galaxy must be estimated.  Current estimates of luminous matter density found in 
many cosmology references are biased, because they were generated in-part by curve fitting galaxy 
rotation curves to Newton’s gravity [13].  To avoid any bias for this comparison, astronomical 
measurements of surface brightness were used to directly estimate luminous matter density as a function 
of radial distance from the galaxy center.   

Surface brightness data for the galaxies under consideration were found in [23] and [24].  An example 
of one of the surface brightness profiles from [23] for the galaxy NGC 2903 is reproduced in Figure 6.  
The various dashed and solid lines in the top chart represent surface brightness measured in J, H, and K 
bands and 2MASS.  The bottom chart shows stellar mass-to-light ratio.  The thin line represents mass-
to-light ratio based on galaxy formation models in J-K bands and the thick line is from 3.6 𝜇m emission 
data scaled down by the diet Salpeter correction.  The diet Salpeter correction is biased, because it is 
understood to be derived from curve fitting to match Newton’s gravity.  In this work, surface brightness 
measurements in the J band was used along with the unscaled J-K band stellar mass-to-light ratio.  The 
J band was selected, because it is where the spectrum of the sun and various galaxies overlap with 
greatest brightness.  For the M31 galaxy, J band surface brightness is not presented in [24] so the I band 
was used as it is the next closest band. 

The ratio of flux density, F, coming from a discrete area of galaxy relative to the flux density, F0, that 
would be measured if a single star with luminosity of the Sun were located at the same distance from 

Earth, 
ி

ிబ
, provides the number density, n, of equivalent Suns in the galaxy at that location.  Flux density 

is quantified in astrophysics by surface brightness on a log base 10 scale and is typically given in units 

of magnitudes per square arcsecond.  The ratio, 
ி

ிబ
, can be obtained from surface brightness in the 

following way,   

𝜇 െ 𝜇଴ ൌ  െ2.5 logଵ଴ ൬
𝐹
𝛼ଶ
൰ ൅ 2.5 logଵ଴ ൬

𝐹଴
𝛼ଶ
൰ 

𝜇 െ 𝜇଴ ൌ  െ2.5 logଵ଴ሺ𝑛ሻ           ሺ17ሻ 

Galaxy Diameter Distance Mass (CG) Mass (Ϙ) Inclination Luminosity

kpc kpc Mo Mo deg Lo

2903 30 7600 7.10E+10 4.0E+08 62 3.87E+10

3198 35 13800 4.95E+10 2.4E+08 66 2.45E+10

M31 67 779 1.50E+12 2.7E+08 77 2.60E+10
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where 𝜇 is the total measured surface brightness of an area, and 𝜇0 is the reference surface brightness of 
that same area if it were illuminated by a single star equivalent to the Sun.  The visual angle, α, defining 
the discrete area of sky cancels from the logarithm.  Reference surface brightness, 𝜇0, is found from, 

𝜇଴ ൌ  െ2.5 logଵ଴ ൬
𝐹଴
𝛼ଶ
൰ ൌ  െ2.5 logଵ଴ ቆ

𝐿⨀
4𝜋𝑑ଶ

𝑑ଶ

𝐷ଶ
𝜋ଶ

180ଶ60ସ
ቇ 

𝜇଴ ൌ െ2.5 logଵ଴ ൬
𝐿⨀

4𝜋𝐷ଶ
൰ െ 2.5 logଵ଴ ቆ

𝜋ଶ

180ଶ60ସ
ቇ 

𝜇଴ ൌ െ2.5 logଵ଴ ൬
𝐿⨀
4𝜋𝐷ଶ

൰ ൅ 26.6          ሺ18ሻ 

where L⨀ is solar luminosity, d is the distance to the galaxy, D is the length of galaxy subtended by the 

angle α, and the ratio 
ௗమ

஽మ
 is the small angle approximation of α2, since 

ௗ

஽
ൌ tan𝛼 ൎ 𝛼 in radians.  The 

constants consisting of π, 180, and 60 convert the square angle in radians to arcseconds2.  The expression 
can be further simplified by introducing the absolute magnitude of the Sun, M0, which is a measure of 
the flux density from the Sun if it were placed at a distance of 10 pc from the earth. 

𝑀଴ ൌ െ2.5 logଵ଴ ൬
𝐿⨀

4𝜋10ଶ
൰           ሺ19ሻ 

Adding and subtracting the different expressions for absolute magnitude (19) from (18), yields 

𝜇଴ ൌ െ2.5 logଵ଴ ൬
𝐿⨀

4𝜋𝐷ଶ൰ ൅ 26.6൅ 𝑀଴ ൅ 2.5 logଵ଴ ൬
𝐿⨀

4𝜋10ଶ
൰  

𝜇଴ ൌ െ2.5 logଵ଴ ቆ
𝐿⨀

4𝜋𝐷ଶ
4𝜋10ଶ

𝐿⨀
ቇ ൅ 26.6൅ 𝑀଴ 

𝜇଴ ൌ െ2.5 logଵ଴ ቆ
10ଶ

𝐷ଶ
ቇ ൅ 26.6൅ 𝑀଴ 

which, for D2ൌ1 pc2, becomes simply, 

𝜇଴ ൌ 21.6 ൅ 𝑀଴          ሺ20ሻ 

Thus, (17) can be rearranged with (20) to find the number density, n, of equivalent Suns in a 1 pc2 area 
of galaxy.  Absolute magnitude, M0, varies by light frequency band width and should be matched to the 
surface brightness measurement.  Based on [25] and a supplemental internet search, the absolute 
magnitude of the Sun in this study is taken to be 3.87 in the J-band and 4.11 in the I-band. 
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Figure 6.  Surface Brightness of NGC2903 [23] 

The subtotal gravitational luminous mass, M, located within a distance, R, from the center of a galaxy 
can be approximated by integrating the number density as a function of radial distance, n(r), thus, 

𝑀ሺ𝑅ሻ ൌ 2𝜋 𝛶𝑀⨀𝐶𝑜𝑠 𝑖 න 𝑛ሺ𝑟ሻ𝑟𝑑𝑟
ோ

଴
          ሺ18ሻ 

where 𝛶 is the mass-to-light ratio from [23] and [24], i is inclination angle, and M⨀ is solar mass.  This 
integration was performed for each galaxy by summing calculated number density over discrete radii.  
The resulting discretized mass values, MሺRሻ, were then inserted into (16) to obtain predicted orbital 
velocity with surface tension.  The initial fit to measured rotational velocity data was poor.  The shape 
of the fit was intriguing, but (16) overpredicted orbital velocity by a factor of 10. 

Subsequently, the discretized mass values from (18) were multiplied by a single fitting parameter in an 
attempt to provide a better correlation.  Results of this fit are shown in Figures 7 through 9.  Predicted 
velocity from the model is shown by the solid white line.  Measured galaxy rotation curves from [21] 
and [22] are shown by the yellow dots for comparison.  The dashed line near the bottom of each chart 
is the orbital velocity predicted by Newton based on the fitted number density.  As can be seen, the fit 
of the model to the shape of rotational velocity curves for these three galaxies is intriguing. 
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Interestingly, the best-fit for all three galaxies was obtained by correcting (18) by multiplying each 
mass increment by a constant, φ, unique to each galaxy such that the resulting overall mass-to-light 
ratio equals exactly 1%.  Overall mass-to-light ratio is defined here as total mass of the galaxy from 
(18) times a single constant divided by the published total luminosity from Table 1.  In other words, 
the fitting constant, φ, could be determined for all three galaxies by assuming an overall mass-to-light 
ratio of 1/100, thus 

1
100

ൌ
𝜑 ׬𝑀ሺ𝑅ሻ𝑑𝑅

𝐿
          ሺ19ሻ 

 

 

 

 

Figure 7.  Predicted and Measured Galaxy Rotation Curves for NGC2903 

 

 



 
14   

©2020 Howard A. Perko 
 

 

Figure 8.  Predicted and Measured Galaxy Rotation Curves for NGC3198 

 

 

Figure 9.  Predicted and Measured Galaxy Rotation Curves for M31 
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Using (19), values of φ were determined to be 0.01, 0.004, and 0.023 for NGC 3198, NGC 2903, and 
M31, respectively.  The reason φ is 0.01 for NGC 2903 is that the generally accepted mass-to-light 
ratio for this galaxy is close to 1.0, whereas the generally accepted mass-to-light ratio for the other two 
galaxies is much different than unity so some additional correction is needed to bring those data into 
correlation with an overall mass-to-light ratio of 0.01. 

7.  Tully-Fisher Relation 
The surface tension model predicts orbital velocities approaching a constant at large distance from 
galactic centers.  This asymptotic velocity is a function of galactic luminous mass only.  In this 
section, the model will be compared to the Tully-Fisher relation and contrasted with predictions from 
leading MOND theories. 

{this section forthcoming} 

8.  Hubble Universe 
In this section, the model will be evaluated with regard to the “dark energy” or negative cosmological 
constant.  FRW equations with surface tension are derived and compare with the Hubble Constant. 

{this section forthcoming} 

9.  Discussion 
The fact that the same overall mass-to-light ratio caused best-fit of the theoretical surface tension 
model to the data for all three galaxies despite a wide range in overall mass, distance from Earth, total 
luminosity, and structure of the test subjects suggests the surface tension model has some merit and 
deserves further study.  A constant correction adds credence to the model predictions.  However, the 
exact nature of this constant discrepancy is unknown at this time and needs to be determined.  One 
astrophysical explanation is that, if the model and its application to the data are correct, then stars 
located in the bulge, which makes up most of the mass of galaxies, are actually 100 times more 
luminous by mass as compared to the Sun.  Another possible explanation is that there is a systemic 
mathematical error in the derivation or in the application of the model.  For example, the correction of 
1/100 is exactly equal to (1/10 pc)2, the standard distance used to calculate absolute magnitude.  If the 
surface brightness data obtained from [23] and [24] were somehow corrected for absolute magnitude 
instead of apparent magnitude, then such a correction could explain the constant variation.  Of course, 
another explanation is that the surface tension model itself is incorrect and that the best fit obtained 
here is some sort of accident.  More work and the modeling of many more galaxies is needed to find 
the answer. 

It should be noted that the proposed model is affected to small extent by referenced distance to galaxy, 
referenced absolute solar magnitude, and surface brightness band variations.  Corrections were made 
for inclination.  Redshift received consideration, but preliminary calculations suggested none of these 
parameters could explain the systematic variance between model predictions and measured rotational 
curves.   Background surface brightness of more distant celestial objects located beyond the subject 
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galaxies was evaluated.  Accounting for background brightness seems to make predicted velocity 
curves trend downward.  Taking into account background surface brightness could explain the shape 
of the measured rotation curve in Figure 7, but here again does not seem to explain the constant 
variance between model predictions and measurements.  It is possible that reference surface brightness 
should be attenuated by scattering and/or absorption phenomena but that would increase calculated 
mass and worsen the correlation. 

One of the most encouraging aspects of the fit between the model and measured galaxy rotation curves 
is the shape of the predicted curves.  The addition of hypothetical dark matter to Newton gravity 
allows one to correct the shape of Newtonian rotation curves so that they do not drop off at 1/r1/2, but 
no amount of configuration of dark matter can explain the discrepancy in the initial slope of rotation 
curves.  Figure 10 is a duplication of Figure 7 except with overall mass-to-light ratio set to 1.0.  As can 
be seen in the figure, Newton gravity not only does not match rotation curves at large distances, it 
overpredicts the initial slope of the rotation curve.  The surface tension model not only corrects 
rotation curves at large radii, it also tends to flatten the initial rotation curve resulting in an overall 
better fit.   

 

Figure 10. Rotation Curves for NGC 2903 with Mass-to-Light Ratio of 1.0 

Surface brightness measurements vary in literature.  For example, [25] provides much different 
brightness values as compared with the referenced work [22].  More work is needed to fetter through 
the vast amount of literature on surface brightness and velocity rotation curves to verify the surface 
tension model. 
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10.  Conclusions  
The model of spacetime with surface tension acting in the place of “dark matter” correlates well with 
the shape of measured rotational velocity curves for the three galaxies in this investigation.  The model 
also correlates well in magnitude to measured rotational velocity if a systematic correction is made to 
the data so that the overall mass-to-light ratio is 1%.  The systematic nature of this correction gives 
merit to the model, but suggests either the current understanding of galaxy formation (bulge stars 100 
times brighter than the Sun) or a consistent misinterpretation of the data (correction for absolute versus 
apparent magnitude). 

The apparent gravitation induced by surface tension is insignificant at solar system scales, because it 
varies with the speed of light squared.  However, at galactic scales, surface tension would govern the 
motion of stars.  The contribution of Newton’s gravity is minimal for luminous matter within and 
around galaxies in comparison with surface tension.  If this simple theory is correct, it would 
drastically change the current understanding of galaxy mass, density, evolution, and mechanisms of 
formation.  
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