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Abstract

We show that the basic properties of a spin-zero quantum field (e.g.
Klein-Gordon equation, Schrdingers equation, probability density, second
quantization, etc.) can emerge from a system with vibrations in space and
time. The internal time of this system can be represented by a self-adjoint
operator. The spectrum of this operator is unbounded and not restricted
by Pauli’s theorem. Also, the particle observed has oscillation in proper
time. By neglecting all quantum effects and assuming the particle as a
classical object that can remain stationary in space, we show that the
proper time oscillator can mimic a point mass at rest in general relativity.
The spacetime outside this proper time oscillator is static and satisfies the
Schwarzschild solution. To measure the temporal oscillation, neutrino can
be an interesting candidate because of its extremely light weight.
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Key Results

Spacetime around an infinitesimal thin shell with fictitious radial
vibrations has the Schwarzschild field solution

A proper time oscillator is the generator of the fictitious radial
vibrations

Matter field has temporal vibrations

Reconcile basic properties of a non-interacting spin-zero matter wave

Internal time of system as self-adjoint operator

A 1/2 spin particle as a rotating particle with oscillation in time
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ds2 = [1−
¯
v2]dt2 − [1−

¯
v2]−1dx2 − dy2 − dz2. (1)
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Problems and Solutions

Counterexamples: Gruber R P, Price R H, Matthews S M, Cordwell
W R and Wagner L F 1988 The impossibility of a simple derivation of
the Schwarzschild metric Am. J. Phys. 56 265-269

Counterexamples: Rindler W 1968 Counterexample to the Lenz-Schiff
argument Am. J. Phys. 36 540-544 ”

Kassner; Impossible only with SR, EP and NL

”It is the spatial-distortion aspect of gravity that ensures that too
simple a derivation of the Schwarzschild metric must fail”

Instead of trying to reconcile the Schwarzschild spacetime geometry,
we apply the idea to a thin shell with fictitious velocity

ds2 = [1−
¯
v2]dt2 − [1−

¯
v2]−1dx2 − dy2 − dz2. (2)
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Thin Shell with Fictitious Radial Oscillations

Consider an infinitesimally thin spherical shell Σ with radius r̆(> 2m).
Relative to this shell, there are radial oscillations, i.e.

t̊f (t, r̆) = t, (3)

r̊f (t, r̆) = r̆ + <̆ cos(ω0t), (4)

The instantaneous radial velocity is,

v̊f (t, r̆) =
∂

∂t
r̊f (t, r̆) = −<̆ω0 sin(ω0t) < 1, (5)
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Thin Shell with Fictitious Radial Oscillations

Clock of a fictitious observer
¯
O oscillating about r = r̆ synchronizes

with the clock of an observer O at spatial infinity.

In its fictitious frame,
¯
O is an inertial observer.

An observer Ŏ stationary at r = r̆ has a fictitious displacement
¯
rf and

instantaneous velocity
¯
vf relative to

¯
O,

¯
rf (t, r̆) = −r̊f (t, r̆) + r̆ = −<̆ cos(ω0t), (6)

¯
vf (t, r̆) = −v̊f (t, r̆) = <̆ω0 sin(ω0t). (7)

Although Ŏ is stationary relative to O at spatial infinity, it is under
the effects as if Ŏ is oscillating in the fictitious frame of

¯
O.
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Effects at t = tm = π/(2ω0)

Obtain the spacetime geometrical properties of the thin shell Σ when
there is only a fictitious velocity|

¯
vf | < 1.

At t = tm = π/(2ω0), the fictitious displacement and instantaneous
velocity are:

¯
rf (tm, r̆) =

¯
rfm = 0, (8)

and

¯
vf (tm, r̆) =

¯
vfm = <̆ω0 < 1. (9)

Ŏ is traveling with a velocity
¯
vfm in the fictitious frame with no

displacement relative to
¯
O.

Understand how the clocks and measuring rods carried by O and Ŏ
are related at the instant t = tm.
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Time and Spatial Measurements in Ŏ

Consider two events in frame Ŏ relate to the coordinate increments
dt and dr for the same two events observed in frame O,[

dt
dr

]
=

[
Υt

t̆ Υt
r̆

Υr
t̆ Υr

r̆

] [
dt̆
d r̆

]
. (10)

In the local frames, the basis vectors in the temporal and radial
directions are orthogonal, i.e. et · er = 0 and et̆ · er̆ = 0.

Ŏ is stationary relative to the inertial frame O.

et̆ ‖ et , and er̆ ‖ er .
Υt

r̆ = Υr
t̆ = 0. (11)
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Clocks in Ŏ and O

When dr̆ = 0, dt̆ is a proper time measured by the clock carried by Ŏ.
Lorentz transformed to the fictitious frame of

¯
O,

d
¯
t = γdt̆, (12)

d
¯
r = γ

¯
vfmdt̆, (13)

In the fictitious frame, Ŏ travels a distance d
¯
r over a time d

¯
t.

Clocks of O and
¯
O are synchronized.

O shall measure the same time as
¯
O,

dt = d
¯
t = γdt̆. (14)

O is physically stationary relative to Ŏ,

dr = 0. (15)

Effect slows down the clock of Ŏ but without relative movement
between O and Ŏ.

Υt
t̆ = γ = [1− (

¯
vfm)2]−1/2 = (1− <̆2ω2

0)−1/2. (16)

Hou Y. Yau (FDNL Research) IRAD- Prague June 2020 11 / 52



Measuring Rods in Ŏ and O

Consider a measuring rod dr̆ carried by Ŏ, expressed as two events
measured at the endpoints of the rod simultaneously, dt̆ = 0.

Lorentz transform to the fictitious frame
¯
O,

d
¯
t = γ

¯
vfmdr̆ , (17)

d
¯
r = γdr̆ . (18)

From viewpoint of
¯
O, rod carried by Ŏ is moving at a velocity

¯
vfm.

Moving length d
¯
l of the rod,

d
¯
l = d

¯
r −

¯
vfmd

¯
t = γ−1dr̆ . (19)

As inertial observers with their clocks synchronized, O measures the
same length of the rod as

¯
O,

dr = d
¯
l = γ−1dr̆ . (20)
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Measuring Rods in Ŏ and O

A rod carried by Ŏ is stationary relative to O.

The effects shorten the rod observed in frame O but there is no
relative movement between O and Ŏ.

Length of rod in frame O measured simultaneously at the endpoints,
dt = 0.

Υr
r̆ = γ−1 = [1− (

¯
vfm)2]1/2 = (1− <̆2ω2

0)1/2. (21)
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Symmetry under Time Translation

What is the effect of the fictitious displacement?

The simple harmonic oscillating system has a symmetry under time
translation.

Effects of the fictitious oscillations on Ŏ shall be constant over time.

Define a constant,

Ĭ = ω2
0(

¯
rf )2 + (

¯
vf )2 = <̆2ω2

0, (22)[
dt
dr

]
=

[
(1− Ĭ )−1/2 0

0 (1− Ĭ )1/2

] [
dt̆
d r̆

]
, (23)
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Line Element at r = r̆

Relate the basis vectors in frame O and Ŏ,

et̆ = et(1− Ĭ )1/2, (24)

er̆ = er (1− Ĭ )−1/2. (25)

Line element at r = r̆ ,

ds2 = gtt(r̆)dt2 + 2gtr (r̆)dtdr + grr (r̆)dr2 − r̆2dΩ2, (26)

Same coordinate system adopted for the conventional Schwarzschild
field.
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Line Element at r = r̆

Metrics at O and Ŏ are different.

gtt(r̆) = et̆ · et̆ = (1− Ĭ )et · et = 1− Ĭ , (27)

grr (r̆) = er̆ · er̆ = (1− Ĭ )−1er · er = −(1− Ĭ )−1, (28)

gtr (r̆) = grt(r̆) = et̆ · er̆ = et · er = 0, (29)

Line element at r = r̆ is,

ds2 = [1− Ĭ ]dt2 − [1− Ĭ ]−1dr2 − r̆2dΩ2. (30)

System also invariant under time reflection symmetry (t → −t).
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Schwarzschild Field

Metric at r = r̆ is line element of Schwarzschild if

Ĭ =
2m

r̆
, (31)

or

m =
r̆<̆2ω2

0

2
. (32)

The vacuum spacetime υ+ outside this time-like hypersurface is the
Schwarzschild spacetime,

ds2 = [1− r̆ <̆2ω2
0

r
]dt2 − [1− r̆ <̆2ω2

0

r
]−1dr2 − r2dΩ2. (33)
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Contraction of Thin Shell

Time-like hypersurface Σ can be contracted per Birkhoffs theorem.

As long as mass m of the shell is remaining constant, the metric and
curvature of the external field will not be affected.

The amplitude of the radial oscillation is, <̆ =
√

2
r̆ω0

.

Spacetime curvature tensors derived are well defined as the shell is
contracted until it reaches a radius r̆ = ε/2.

Shell becomes infinitely small but with <̆ → ∞.

Although fictitious instantaneous velocity on a shell inside event
horizon can exceed the speed of light (i.e.

¯
vfm > 1 when r̆ < 2m),

they are not physical vibrations of matter.

As information about the geometrical properties of spacetime, there is
no superluminal transfer of energy.

As predicted by Birkhoffs theorem, the metric around this infinitely
small shell is the Schwarzschild spacetime.
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Proper Time Oscillator

Next, consider a proper time oscillator

t̊f (t, x) = t − Π(x) sin(ω0t)

ω0
= t + ζ̊t(t, x), (34)

where

ζ̊t(t, x) = −Π(x)

ω0
sin(ω0t), (35)

and
Π(x) = 0 if |x| ≥ ε/2, (36)

Π(x) = 1 if |x| < ε/2. (37)

Π(x) is a pulse with width ε→ 0.
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Superposition of Temporal Oscillator

ζ̊t is a wave packet with infinitesimal width that can be decomposed
into Fourier series of plane waves ζtk = −iTke

i(k·x−ωt).

Utilize ζtk as functions for the Fourier decomposition of a classical
wave.

ζtk is only the 0-component of a plane wave with 4-vector amplitude.

The other component with vibrations in space, ζxk = −iXke
i(k·x−ωt)

Further define a plane wave,

ζk =
T0

ω0
e i(k·x−ωt), (38)

such that ζt and ζx can be obtained from ζ:

ζtk = ∂0ζ = −iTke
i(k·x−ωt), (39)

ζxk = −∇ζ == −iXke
i(k·x−ωt). (40)
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Superposition of Temporal Oscillator

Similarly, we can define for a proper time oscillator,

ζ̊(t, x) =
Π(x)

ω2
0

cos(ω0t), (41)

which can be decomposed. The superpositions are linear, previous results
can be extended to obtain its vibrations in time and space (ζ̊t , ζ̊x), i.e.

ζ̊t =
∂ζ̊

∂t
, (42)

ζ̊x = −∇ζ̊. (43)

There are additional oscillations in space other than the oscillation in time.
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Radial Oscillations

System is spherically symmetric; switch to a spherical coordinate system,

r̊f (t, r) = r + ζ̊r (t, r), (44)

where

ζ̊r (t, r) = −∂ζ̊
∂r

= −Π′(r)

ω2
0

cos(ω0t). (45)

Π′(r) denotes the derivative of Π(r) with respect to r, such that

Π′(r) = 0 if r 6= ε/2, (46)

Π′(r) = −∞ if r = ε/2. (47)

There are oscillations in the radial direction about r = ε/2.
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Rest Mass System

Summarize our results:
At r = 0,

t̊f (t, 0) = t − sin(ω0t)

ω0
, (48)

r̊f (t, 0) = 0. (49)

At r = ε/2,
t̊f (t, ε/2) = t, (50)

r̊f (t, ε/2) = ε/2 + <∞ cos(ω0t) with <∞ →∞. (51)
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Time Translation Symmetry

The system has two oscillating components: the proper time oscillator
at r = 0 and the radial oscillations about r = ε/2.

Total energies of simple harmonic oscillating systems are conserved.

System as a whole has a symmetry under time translation by
Noether’s theorem.

Internal energy E is the summation of two parts.

Analogous to the ’potential’ and ’kinetic’ energy components of a
classical harmonic oscillator.

E = mc2 looks like the energy of an oscillator. c is the rate of time.
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Radial Oscillations not Vibration of Matter through Space

Instantaneous velocity of the radial oscillation is,

v̊f (t, ε/2) =
∂

∂t
r̊f (t, ε/2) = −<∞ω0 sin(ω0t), (52)

Matter cannot have superluminal motion.

Radial oscillation cannot be interpreted as vibration carrying an
observer through space.

Study the effects of these radial oscillation on an observer that is
stationary at r = ε/2; as a geometrical property of spacetime.
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Fictitious Radial Oscillations

An observer O stationary at spatial infinity is an inertial observer
which is used as reference.

In a Minkowski spacetime, the clock of a stationary observer at any
location shall be synchronized.

It is the clock of a fictitious observer
¯
O oscillating about r = ε/2 that

synchronize with the clock of O.

t̊f (t, ε/2) = t, (53)

r̊f (t, ε/2) = ε/2 + <∞ cos(ω0t) with <∞ →∞. (54)

An observer O+ on the shell with radius r = ε/2 will have an
oscillation

¯
rf relative to the fictitious inertial observer

¯
O, i.e.

¯
rf (t, ε/2) = −r̊f (t, ε/2) + ε/2 = −<∞ cos(ω0t). (55)

This infinitesimal thin shell is the same as described earlier.

Spacetime around the proper time oscillator is the Schwarzschild field.
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Matter Field with Oscillations in Time

Consider background coordinates (t, x) in an inertial frame O

Time in this background is the ’external time’

Analogous to classical amplitude X, define amplitude T as maximum
difference between time of matter inside the wave, tf , and the
external time, t

An inertial observer outside see the matter’s clock vibrates with time

Matter’s internal clock running at a varying rate

’Internal time’ tf is an intrinsic property of matter

(T ,X) is a 4-vector, where T 2 = T 2
0 + |X|2
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Oscillations in Space and Time

The vibrations in space and time can be written as

xf = x + X sin(k · x− ωt) = x + xd = x + Re(ζx), (56)

tf = t + T sin(k · x− ωt) = t + td = t + Re(ζt), (57)

where
xd = Re(ζx) = X sin(k · x− ωt). (58)

td = Re(ζt) = T sin(k · x− ωt), (59)

External time t used as reference measuring temporal vibrations

Temporal vibrations as additional degrees of freedom

Analyze only these two equations give us the quantum field

Hou Y. Yau (FDNL Research) IRAD- Prague June 2020 28 / 52



Real Scalar Field

Further define a plane wave,

ζ =
T0

ω0
e i(k·x−ωt), (60)

such that ζt and ζx can be obtained from ζ as:

ζt = ∂0ζ, (61)

ζx = −∇ζ. (62)

Vibrations of matter in space and time can be described by ζ.
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Hamiltonian Density

Consider a system in a volume V that can have multiple particles
with mass m

Impose periodic boundary conditions at the box walls

Equations of motion:
∂u∂

uζ + ω2
0ζ = 0, (63)

∂u∂
uζ∗ + ω2

0ζ
∗ = 0. (64)

Classical field so far. The corresponding Hamiltonian density

H = K [(∂0ζ
∗)(∂0ζ) + (∇ζ∗) · (∇ζ) + ω2

0ζ
∗ζ]. (65)

Make the ansätz

K =
mω2

0

2V
. (66)
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Analyze Hamiltonian Density Equation

Look at each term on the right hand side (RHS) of Hamiltonian density
equation.

H1 = (
mω2

0

2V
)T ∗T , (67)

mω2
0/2 is an usual term of a harmonic oscillator with mass m except the

vibration is in time.

H2 = (
mω2

0

2V
)X∗ · X, (68)

has the familiar form of harmonic oscillation in space.

H3 = (
mω2

0

2V
)T ∗0 T0. (69)

After combining,

H = (
mω2

0

V
)T ∗T . (70)
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Internal Energy with Oscillation in Time

Consider the simple plane waves

ζ0 =
T0

ω0
e−iω0t . (71)

Matter inside has vibrations in proper time only, i.e. |k| = 0 and xf = x.

H0 = (
mω2

0

V
)T ∗0 T0. (72)

Inside the system, energy E = mω2
0T
∗
0 T0

Proper time is an intrinsic property of matter

Only consider mass m without various charges or force fields.

Consider this energy as the internal energy of mass.
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Proper Time Oscillator

The energy E for the vibration of matter in proper time is necessary on
shell if it is the internal energy of mass. For a single particle system, we
have

E = mω2
0T
∗
0 T0 = m, (73)

or
ω2

0T
∗
0 T0 = 1. (74)

Suggest a possibility that a point mass m can have oscillation in
proper time with amplitude |T̃0| = 1/ω0.

E = mc2 looks like the energy of an oscillator. c is the rate of time.
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Time inside the Oscillator

The internal time is:

t̊+
f (t) = t − sin(ω0t)

ω0
. (75)

This point mass is stationary in space. The internal time rate is

∂ t̊+
f

∂t
= 1− cos(ω0t). (76)

The average of this time rate is 1

Bounded between 0 and 2 which is positive moves only in the forward
direction

Particle will be observed traveling along a near time-like geodesic if
our measurement is not sensitive enough.
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Many Particle Field

The condition that mass is on shell imposes a constraint. We can extend
this concept to a many particle system.

ω2
0T
∗
0 T0 = n, (77)

which is a Lorentz invariant. The energy in a plane wave ϕ±0 with
vibrations in proper time is quantized with n = 0, 1, 2, ... For our analysis,
we define another plane wave ϕ±n which is normalized in volume V when
n = 1,

ϕ±n = γ−1/2ϕ±, (78)

where γ = (1− |v|2)−1/2. The Hamiltonian density is

H±n = γH±0 =
nω

V
. (79)

The energy is quantized with n particles in a volume V .
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Superposition of Wave

Obtain a real scalar field by superposition of plane waves,

ϕ(x) =
∑

k

ϕ+
nk(x) + ϕ−nk(x)

=
∑

k

(2Vω)−1/2(ω0T0ke
−ikx + ω0T

∗
0ke

ikx),

which satisfies the Klein-Gordon equation. This field is an infinite array of
quantized oscillators. Its Hamiltonian density equation is,

H = 1/2[(∂0ϕ)2 + (∇ϕ)2 + ω2
0ϕ

2], (80)

It is a quantized field.
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Field Quantization

The transition to a quantum field can be done via canonical quantization.
Physical observables shall be promoted to operators.

Nk = ω2
0T
†
0kT0k, (81)

ak = ω0T0k, (82)

a†k = ω0T
†
0k, (83)

such that Nk = a†kak. The Hamiltomian density becomes

H =
1

V

∑
k

ωka
†
kak, (84)

which have structures resemble a zero-spin bosonic field.

Extension to non-relativistic limit and Schrodinger equation is straight
forward.
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Non-Relativistic Limit

In the non-relativistic limit, we will define:

ψk =
ω0T0k√

V
e i(k·x−ωc t+χ) ≈

[
ω2

0√
V
e i(ω0t+χ)

]
ζk, (85)

where e iχ is an arbitrary phase factor. ψk is a solution for the Schrödinger
equation of a free particle, −i∂ψk/∂t = (2m)−1∇2ψk. The superposition
principle holds such that

ψ = e iχ
∑

k

ω0T0k√
V

e i(k·x−ωc t), (86)

is also a solution.
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Probability Density

ψ∗kψk =
ω2

0T
∗
0kT0k

V
=

nk

V
, (87)

is a particle number density. The amplitude αk = ω0T0k/
√
V in Eq. (85)

is a probability amplitude.

ψ = e iχ
∑

k

ω0T0k√
V

e i(k·x−ωc t), (88)

The introduction of the arbitrary phase factor e iχ does not change the the
probability density ψ∗ψ or the result that ψ satisfies the Schrödinger
equation. The theory developed with wave functions ψ shall be invariant
under global phase transformation χ but the relative phase factors are
physical. The overall phase of ψ is unobservable.
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Reasons against Time as Operator

According to Pauli’s reasoning, a time operator t satisfies [H, t] = i .
Let HΨE = EΨE , and then we have He iαtΨE = (E + α)e iαtΨE ,
where α is an arbitrary constant. However, (E + α) is an eigenvalue
of e iαtΨE which implies time cannot be an operator because
contradict the fact that the Hamiltonian spectrum must be positive.
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Temporal Vibration Operator

Base on the condition ω2
0T
∗
0 T0 = n,

Tk =
ω

ω0
T0k =

ω

ω2
0

ak, (89)

T †k =
ω

ω0
T †0k =

ω

ω2
0

a†k, (90)

satisfying commutation relations,

[Tk,T
†
k′ ] =

ω2

ω4
0

δkk′ , (91)

[Tk,Tk′ ] = [T †k ,T
†
k′ ] = 0. (92)

In the Heisenberg picture, Tk(t) and T †k (t) evolve over time as:

d

dt
Tk(t) = i [Hk(t),Tk(t)] = −iωTk(t) → Tk(t) = Tk(0)e−iωt , (93)

d

dt
T †k (t) = i [Hk(t),T †k (t)] = iωT †k (t) → T †k (t) = T †k (0)e iωt . (94)
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Temporal Vibration Operator

ζ is a real scalar field that can be applied to obtain the temporall vibrations
of matter in a bosonic field. It can be rewritten in terms of Tk and T †k as:

ζ(x) =
∑

k

√
ω0

2ω3
[Tke

−ik·x + T †k e
ik·x]. (95)

The temporal vibrations field operator is the time derivative of ζ(x) by
applying Eq. (61),

td(x) = ζt(x) = ∂0ζ(x) =
∑

k

−i
√
ω0

2ω
[Tke

−ik·x − T †k e
ik·x], (96)
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Temporal Vibration Operator

The Lagrangian density for the real scalar field is:

L =
ρ̄mω

2
0

2
[(∂0ζ)2 − (∇ζ)2 − ω2

0ζ
2], (97)

where
ρ̄m =

ω0

V
, (98)

is a mass density constant of the system. Hence, the conjugate momenta
of ζ(x) is:

η(x) =
∂L

∂[∂0ζ(x)]
= −i ρ̄mω2

0

∑
k

√
ω0

2ω
[Tke

−ik·x − T †k e
ik·x] = ρ̄mω

2
0ζt(x).

(99)
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Temporal Vibration Operator

Satisfy the equal-time commutation relations:

[ζ(t, x), η(t, x′)] = iδ(x− x′), (100)

[ζ(t, x), ζ(t, x′)] = [η(t, x), η(t, x′)] = 0, (101)

Similarly,
[ζ(t, x), ζt(t, x

′)] = (ρ̄mω
2
0)−1δ(x− x′), (102)

[ζt(t, x), ζt(t, x
′)] = 0. (103)

The conjugate momenta of ζ(x), describe the temporal vibrations in a
bosonic field .
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Temporal Vibration Operator

A temporal oscillator has displacement in either the positive or
negative temporal direction relative to the external time t.

Intrinsic time tf is the summation of the temporal vibration ζt and
the external time t

The intrinsic time of a particle travels at an average rate of the
external time

The difference between the external time and intrinsic time is
measured by the temporal vibration operator

ζ(x), ζt(x) and η(x) are self adjoint operators

The temporal vibration and the Hamiltonian do not form a conjugate
pair, no commutation relation with the semi-bounded Hamiltonian
that restrict the spectrum of the temporal vibration operator to be
bounded

External time t remains a parameter called for by Pauli’s theorem
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1/2 Spin with Temporal Vibration

Consider a spin-1/2 particle wave in the non-relativistic limit,

ζ1/2(t) =
e−iβ(t)

ω2
0

, (104)

β(t) = ω0t = −φ̂(t)/2. (105)

β is the phase of the temporal oscillation; φ̂ is the intrinsic angle of
rotation about the z axis that ‘runs through’ the particle observed.

The first equality, β(t) = ω0t, states that the wave has vibrations in
proper time

The plane wave is normalized and the particle observed is at rest

The second equality, ω0t = −φ̂(t)/2, implies the particle is rotating
about its own z-axis

Its angular velocity, ∂φ̂(t)/∂t = −2ω0, is twice as fast as the
temporal oscillation
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1/2 Spin with Temporal Vibration

Eq. (104) can be rewritten,

ζ1/2(t) =
e i φ̂(t)/2

ω2
0

. (106)

Requires the rotation of φ̂ = 4π to return ζ1/2 to its original state

Temporal oscillation and particle rotation can be visualized as two
wheels

A larger ‘time wheel’ and a smaller ‘particle wheel’

Turning one of the wheels will drive the other to turn

Require ‘particle wheel’ to rotate two turns before ‘time wheel’
complete one

Temporal oscillation and particle rotation are connected by β = −φ̂/2
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1/2 Spin with Temporal Vibration

ζ1/2 can also be expressed as a function of φ̂,

ζ1/2(φ̂) =
e i φ̂/2

ω2
0

. (107)

An angular momentum is observed when there is a periodic structure
to its wave function

Defining the intrinsic angular momentum operator as,

Sz = −i ∂
∂φ̂
, (108)

and taking ζ1/2(φ̂) as its eigenfunction, the corresponding eigenvalue
is 1/2 which is the intrinsic angular momentum of the particle

The intrinsic angular momentum of this particle is a ‘pure’ quantum
phenomenon
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1/2 Spin with Temporal Vibration

Reverse the direction of the particle’s rotation, φ̂→ −φ̂, i.e.

ζ−1/2(φ̂) =
e−i φ̂/2

ω2
0

. (109)

Taking ζ−1/2(φ̂) as an eigenfunction of Sz , the corresponding
eigenvalue is −1/2

The particle can have two different spin states with intrinsic angular
momentum of ±1/2 along its z axis

Two-component complex-valued spinors, i.e.

|ζ1/2(t)〉 =

(
1
0

)
e−iω0t

ω2
0

, (110)

|ζ−1/2(t)〉 =

(
0
1

)
e−iω0t

ω2
0

, (111)
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Experimenting with Neutrino

A neutrino with m = 2eV (ω0 = 3.04× 1015s−1 and
T̃0 = 1/ω0 = 3.29× 10−16s),

E = 1Mev T̊n = 2.3×10−13s, |X̊n| = 7.0×10−3cm, ωp = 6.1×109s−1,
(112)

E = 1Gev T̊n = 7.4× 10−12s, |X̊n| = 0.22cm, ωp = 6.1× 106s−1.
(113)

Temporal oscillation can affect the rate of change for the intrinsic
properties of a particle, e.g. decay rate of an unstable particle,
neutrino oscillation, etc.

Intrinsic time in average equals external time. However, during a
cycle of oscillation, it can deviate from the average. The standard
deviation is not zero.

Neutrino can be an interesting candidate because of its
extreme light weight
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Conclusion

Schwarzschild field

Born’s postulate

Why matter field need to be quantized

Pauli’s theorem

Einstein’s mass-energy relation

1/2 spin particle
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The End
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