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Abstract

Abstract

The motions of a spinless point-like charged particle predicted
by the Landau-Lifshitz equation and the Hammond method are
obtained for a step electric field and an elecromagnetic pulse
by using analytical and numerical solutions.
In addition to Hammond method not presenting the so-called
constant force paradox, using step force brings out the
apparent physical contradictions of Landau-Lifshitz equation
regarding energy conservation.
Unlike other cases, the electromagnetic pulse shows another
fundamental difference between the two models.
Finally, an analysis of the Hammond method is made.
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Introduction

In 1938, Dirac [1] proposed a relativistic equation which includes
the radiation reaction force for a spinless point-like charged
particle.
Being a third-order differential equation, it do present solutions
with physical anomalies such as self-accelerations and
pre-accelerations.
In recent years, the Landau-Lifshitz equation [LL] [2] has been
considered by many authors as the best equation to describe the
motion of a spinless point-like charged particle including the
radiation reaction force within the framework of Classical
Electrodynamics.
The LL is a second-order differential equation and it does not
present solutions with physical anomalies such as self-accelerations
and pre-accelerations that exist in Dirac’s theory.
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Different Proposals [3] (see Fig. 1)

Figure 1: LAD=Lorentz-Dirac; LL=Landau-Lifshitz; FO=Ford-O’Connel;
MP=Mo-Papas; SW=Steiger-Woods; HL=Hartemann-Luhman;
Y=Yaghjian; H=Hammond
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Purpose

Hammond [3] noticed that when the LL is considered to describe
the motion of a charged particle submitted to a constant electric
field, the radiation reaction force vanishes and the solution is
identical to the one obtained by using the Lorentz equation.
This is called the constant force paradox [4] [5].
Consequently, he proposed another method to describe the motion
of a charged particle.
The purpose of this article consists of making a comparison
between Hammond method and the LL.
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The Landau-Lifshitz Equation

The Landau-Lifshitz equation of motion for a charged point
particle is [2]

maµ = (q/c)Fµνwν

+τo
[ q
c (
∂Fµν

∂xα w
αwν − (q/cm)FµνFαww

α) + (q2/c4m)F 2wµ
]
.(1)

And after some algebra by defining [5],

∆µν(w) = gµν − wµwν

c2
, (2)

we obtain

maµ =
e

c
Fµνwν +mτo∆

µν(w)
e

mc

[
e

mc
FναF

αβwβ + wρwα
∂Fνα
∂xρ

]
(3)
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The Constant Force Paradox

Consider the radiation reaction term for a constant electric field E,

∆µν(wρ)
[
e
mc [Fνα]

[
Fαβ

]
wβ + wρwα ∂Fνα∂xα

]
= ∆µν(wρ)

[
e
mc

[
F extνα

] [
Fαβ

]
wβ
]
. (4)

Then,

∆µν(wρ)
[
e
mc [Fνα]

[
Fαβ

]
wβ + wρwα ∂Fνα∂xα

]
= (nµν − wµwν

c2
)×

[
e
mc [Fνα]

[
Fαβ

]
wβ
]

= E2wµ
(

1− c2

c2

)
= 0. (5)
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The Constant Force Paradox

Therefore, for the constant electric force, the LL is equivalent to
the Lorentz equation of motion.

No radiation reaction force.
If we consider the electric field in the x1 direction, the equations
turn to be

dw0

dτ
=
eE

mc
w1 = Ωw1

dw1

dτ
=
eE

mc
w0 = Ωw0, (6)

where Ω = eE
mc . If we impose the initial conditions for the

4− velocity, w0 = c and w1 = 0, the well-known solutions are

w0 = c cosh Ωτ

w1 = c sinh Ωτ. (7)
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Graph of w1 vs τ for the Lorentz and the LL equations for
Ω = 1 with a Constant Electric Field
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Figure 2: w1 for the constant electric field in the x1 direction by using
the Lorentz and LL equations

G. Ares et al. — 9/64



Graph of w0 vs τ for the Lorentz and LL Equations for
Ω = 1 with a Constant Electric Field
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Figure 3: w0 for the constant electric field in the x1 direction by using
the Lorentz and LL equations
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Step Force for the Lorentz Equation

Let us consider an electric field in the x1 direction which behaves
as a step function; that is:

E =

{
0 for τ < 0
Eo for τ ≥ 0

}
= EoH (τ) (8)

The solutions for the Lorentz equation are simple:
1◦ case, τ < 0.
The solution is

w1 = 0 and w0 = c (9)

2◦ case, τ ≥ 0.
The solution is

w1 = c sinh Ωτ and w0 = c cosh Ωτ (10)

G. Ares et al. — 11/64



Step Force for the Lorentz Equation

Let us consider an electric field in the x1 direction which behaves
as a step function; that is:

E =

{
0 for τ < 0
Eo for τ ≥ 0

}
= EoH (τ) (8)

The solutions for the Lorentz equation are simple:
1◦ case, τ < 0.
The solution is

w1 = 0 and w0 = c (9)

2◦ case, τ ≥ 0.
The solution is

w1 = c sinh Ωτ and w0 = c cosh Ωτ (10)

G. Ares et al. — 11/64



Graph of w1 vs τ for the Lorentz Equation Ω = 1 with a
Step Electric Field
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Figure 4: w1 for the step electric field in the x1 direction by using the
Lorentz equation
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Graph of w0 vs τ for the Lorentz Equation Ω = 1 with a
Step Electric Field
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Figure 5: w0 for the step electric field in the x1 direction by using the
Lorentz equation
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Step Force for the LL

By using the LL, Eq. (3), for the step electric field, we have for w1

dw1

dτ
= ΩH(τ)w0

+τoΩ

[
δ(τ)w0 +H(τ)

dw0

dτ

]
+τoΩ

2H(τ)2w1, (11)

and for w0,

dw0

dτ
= ΩH(τ)w1

+τoΩ

[
δ(τ)w1 +H(τ)

dw1

dτ

]
+τoΩ

2H(τ)2w0. (12)
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Step Force for the LL

These equations can be reduced in a simple fashion by using the
fact that the LL reaction term vanishes with the constraint that at
τ = 0 the δ-function creates a jump and it turns out to consider
the Lorentz equation just with different initial conditions due to
the jump in each step.
Another way of solving the equation just consists in proposing a
general solution of the type:

w1 = c sinh Ψ and w0 = c cosh Ψ, (13)

where Ψ = Ψ(τ). Introducing Eq. (13) into Eqs. (11) and (12),
we obtain:

◦
Ψ = Ω(H(τ)) + τoΩ(δ(τ)), (14)

which coincides with the result found by Baylis and Huschilt [6] for
the LL equation.
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Step Force for the LL

After a simple integration, considering the initial conditions, we
arrive to:

Ψ =

{
0 for τ < 0
Ωτ + Ωτo for τ ≥ 0

}
(15)

Therefore, we have two cases:
1◦ case, τ < 0
The solutions are

w1 = 0 and w0 = c (16)

2◦ case, τ ≥ 0
The solutions are

w1 = c sinh (Ω (τ + τ0)) and w0 = c cosh (Ω (τ + τ0))
(17)
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Graph of w1 vs τ for LL, Ω = 1 with a Step Electric Field
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Figure 6: w1 for the step electric field in the x1 direction by using the LL
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Graph of w0 vs τ for the LL, Ω = 1 with a Step Electric
Field
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Figure 7: w0 for the step electric field in the x1 direction by using the LL
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Hammond Theory

The constant force paradox encouraged Hammond to develop a
theory which avoids it [3], [7], [8], [9], [10], [11].
He began by proposing an equation of this type

dwµ

dτ
=

e

mc
Fµσwσ + fµ, (18)

where the radiation reaction force fµ is described by

fµ = φ,µ − wµ

c2

dφ

dτ
. (19)

It has to be pointed out that d does not represent an exact
differential as it happens with the heat in Thermodynamic. This
point represents a correction to Hammond theory. Indeed, we will
see that φ = φ(xµ, wµ); that is:

dφ

dτ
=

∂φ

∂xµ
wµ and

dφ

dτ
=

∂φ

∂xµ
wµ +

∂φ

∂wµ
aµ. (20)
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Hammond Theory

Physically, this is consistent with the fact that non exact
differentials are always connected with no reversible processes as
the radiation. Then,

aµ =
dwµ

dτ
=

e

mc
Fµσwσ +

1

m
φ,µ − wµ

c2m

dφ

dτ
. (21)

Following Hammond [11] but including our correction, we arrive at:

P =
dφ

dτ
=

∂φ

∂xµ
wµ with P = −τoma2 = −τomaµaµ.

(22)

Then,

dφ = Pdτ = −τomaµaµdτ = −τom
dwµ
dτ

dwµ

dτ
dτ. (23)
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Constant Electric Field in the x1 Direction within
Hammond Theory

In order to analyze the constant electric field in the x1 direction
and to be able to solve Eq. (21) it is necessary to make the
following approximation (first order in τo): The Lorentz
acceleration is taken to evaluate the P ; that is:

P = −τomaµaµ = −τom
(( e

cm

)2
Fανw

νFαβwβ

)
= −τom

( e

cm

)2
E2
(
−wxwx − w0w

0
)

= τom
e2

m2
E2 = τo

e2

m
E2. (24)

Therefore,

dφ = Pdτ = τo
e2

m
E2dτ. (25)
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Constant Electric Field in the x1 Direction within
Hammond Theory

Knowing that,

dτ =
dt

γ
, (26)

we must have

dφ =
∂φ

∂xµ
dxµ =

∂φ

∂x0
dx0 +

∂φ

∂x1
dx1

= φ,0dx0 + φ,1dx1

= Pdτ = P
dt

γ
=
P

γ
dt =

P

γc
d (ct) =

P

γc
dx0. (27)
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Constant Electric Field in the x1 Direction within
Hammond Theory

By using Eqs. (23) y (27), we have

dφ

dτ
= P = τo

e2

m
E2, φ,0 =

P

γc
and φ,1 = 0. (28)

On the other hand,

wµ

(
φ,µ − wµ

c2

dφ

dτ

)
= wµφ

,µ − wµw
µ

c2

dφ

dτ

= wµ
∂φ

∂xµ
− wµ

∂φ

∂xµ
= 0. (29)

This result used in Eq. (21) permits to check the balance of energy.
It has to be remembered that in general φ = φ(xµ, wµ). However,

φ,0 =
∂φ

∂x0
=
P

γc
= τo

e2

γcm
E2 = τo

e2

γcm
E2, (30)

G. Ares et al. — 23/64



Constant Electric Field in the x1 Direction within
Hammond Theory

By using Eqs. (23) y (27), we have

dφ

dτ
= P = τo

e2

m
E2, φ,0 =

P

γc
and φ,1 = 0. (28)

On the other hand,

wµ

(
φ,µ − wµ

c2

dφ

dτ

)
= wµφ

,µ − wµw
µ

c2

dφ

dτ

= wµ
∂φ

∂xµ
− wµ

∂φ

∂xµ
= 0. (29)

This result used in Eq. (21) permits to check the balance of energy.
It has to be remembered that in general φ = φ(xµ, wµ). However,

φ,0 =
∂φ

∂x0
=
P

γc
= τo

e2

γcm
E2 = τo

e2

γcm
E2, (30)

G. Ares et al. — 23/64



Constant Electric Field in the x1 Direction within
Hammond Theory

By using Eqs. (23) y (27), we have

dφ

dτ
= P = τo

e2

m
E2, φ,0 =

P

γc
and φ,1 = 0. (28)

On the other hand,

wµ

(
φ,µ − wµ

c2

dφ

dτ

)
= wµφ

,µ − wµw
µ

c2

dφ

dτ

= wµ
∂φ

∂xµ
− wµ

∂φ

∂xµ
= 0. (29)

This result used in Eq. (21) permits to check the balance of energy.
It has to be remembered that in general φ = φ(xµ, wµ). However,

φ,0 =
∂φ

∂x0
=
P

γc
= τo

e2

γcm
E2 = τo

e2

γcm
E2, (30)

G. Ares et al. — 23/64



Constant Electric Field in the x1 Direction within
Hammond Theory

Had we used dφ, we will have

wµ

(
φ,µ − wµ

c2

dφ

dτ

)
= wµφ

,µ − wµw
µ

c2

dφ

dτ

= wµφ
,µ − dφ

dτ

= wµφ
,µ − wµφ,µ − aµ

∂φ

∂wµ

= −aµ
∂φ

∂wµ
6= 0. (31)

If we analyze Eq. (30), we can notice that φ = φ(w0) since γc = w0.
Moreover, Eq. (29) will not be accomplished and the balance of
energy will be not satisfied. Therefore, we must use dφ.
Finally, the radiation reaction term depends on the trajectory as it
is expected.
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

We are able to express the equations of motion in such a case

dw0

dτ
=
eE

cm
wx +

1

m

P

γc
− w0

c2m
P

dw0

dτ
=
eE

mc
wx +

1

m

P

γc
− 1

m

P

c
γ. (32)

We obtain

c2m
·
γ = eE +

P

γ
− Pγ. (33)
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

For x1, by using Ω = eE/mc, we arrive at

dw1

dτ
=

e

mc
Fµσwσ +

1

m
φ,1 − 1

m

w1

c2

dφ

dτ
dw1

dτ
=

eE

mc
w0 − τow1 e2

c2m2
E2. (34)

That is,
dw1

dτ
= Ωw0 − τoΩ2w1. (35)
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

Let us propose
wµ = uµ + τov

µ. (36)

Therefore, Eq. (35) can be written as

dw1

dτ
=
d
(
u1 + τov

1
)

dτ
= Ω

(
u0 + τov

0
)
− τoΩ2

(
u1 + τov

1
)
. (37)

On the other hand, developing the identity wµw
µ = 1,

1 = w0w
0 + w1w

1

= (u0 + τ0v0)
(
u0 + τ0v

0
)

+ (u1 + τ0v1)
(
u1 + τ0v

1
)
,

= u0u
0 + u1u

1 + 2τ0

[
u0v

0 + u1v
1
]

+ τ2
0

(
v0v

0 + v1v
1
)
,

By comparing the coefficients of τ0 and τ2
0 , we obtain

u0v
0 + u1v

1 = 0, (38)

v0v
0 + v1v

1 = 0.
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

Therefore,

v1 = −u0v
0

u1
=
u0v0

u1
, (39)

(v0)2 = −v1v
1 = (v1)2. (40)

Then, from Eq. (35), we have

d
(
u1 + τov

1
)

dτ
= Ω

(
u0 + τov

0
)
− τoΩ2

(
u1 + τov

1
)
. (41)

Developing in terms of τo, we obtain

du1

dτ
= Ωu0 and

dv1

dτ
= Ωv0 − Ω2u1. (42)
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

Since the electric field is constant in x1 direction,

du0

dτ
= Ωux ⇒ u0 = c cosh Ωτ and

dux

dτ
= Ωu0 ⇒ u1 = c sinh Ωτ.

(43)
Therefore,

dv1

dτ
− Ωv0 = −cΩ2 sinh Ωτ. (44)

Then, we need to express v0 in order to solve the last equation.
From Eq. (67), we have

v0 =
u1

u0
v1. (45)

Then,
dv1

dτ
− Ω

u1

u0
v1 = −cΩ2 sinh Ωτ. (46)
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The Equation of Motion for the Constant Electric Field in
the x1 Direction within Hammond Theory

By using Eq. (43), we arrive at

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ. (47)

The solution is

v1 = cτ0Ω cosh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
. (48)
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The Solution of the Equation of Motion for the Constant
Electric Field in the x1 Direction within Hammond Theory

Finally, the solution for w1 is:

w1 = c sinh Ωτ + τ0v
1

= c sinh Ωτ + cτ0Ω cosh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
(49)

Now, we need to obtain w0. We have:

dw0

dτ
=

e

cm
Ew1 +

1

m

P

γc
− w0

c2m
P.

By substituting P , we obtain

dw0

dτ
= Ωw1 + τoΩ

2

(
c

γ
− w0

)
. (50)
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The Solution of the Equation of Motion for the Constant
Electric Field in the x1 Direction within Hammond Theory

By using Eq. (36) into Ec. (50), with w0 = u0 + τov
0 , we have

dw0

dτ
=
du0 + τov

0

dτ
= Ω

(
u1 + τov

1
)

+τoΩ
2

(
c2

u0 + τov0
− u0 + τov

0

)
du0

dτ
+ τo

dv0

dτ
= Ωu1 + τoΩv

1 + τoΩ
2

(
c2

u0
− u0

)
(51)

Therefore,

du0

dτ
= Ωu1 and

dv0

dτ
= Ωv1 + Ω2

(
c2

u0
− u0

)
. (52)

We can assure that:
u0 = c cosh Ωτ. (53)
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The Solution of the Equation of Motion for the Constant
Electric Field in the x1 Direction within Hammond Theory

Instead of solving directly Eq. (52), from Eq. (70), v0 = u1

u0
v1, we

can deduce

v0 =
u1

u0
v1 = tanh (Ωτ) v1 = cΩ sinh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
(54)

Finally,

w0 = c cosh Ωτ + cτ0Ω sinh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
. (55)
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Graph of w1 vs τ with a Constant Electric Field within
Hammond Theory, Ω = 1 and τ0 = 0.1
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Figure 8: w1 for the constant electric field in the x1 direction within
Hammond theory.
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Graph of w0 vs τ with a Constant Electric Field within
Hammond Theory, Ω = 1 and τ0 = 0.1
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Figure 9: w0 for the constant electric field in the x1 direction within
Hammond theory.
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The Equation of Motion for the Step Electric Field in the
x1 Direction within Hammond Theory

We must now obtain the motion of a charge within Hammond
theory in the case of a step electric field in x1 direction. Therefore,
we use the electric field described in Eq. (8). Eq. (47) is still valid

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ,

but with a different Ω,

Ω =

{
0 for τ < 0

eEo
cm = Ω0 for τ ≥ 0

(56)

The problem can be divided in two cases:
1◦ case, τ < 0⇒ Ω = 0
Then, Eq. (47) can be written as

dv1

dτ
= 0. (57)
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The Equation of Motion for the Step Electric Field in the
x1 Direction within Hammond Theory

Then,
dw1

dτ
= 0⇒ w1 = 0. (58)

2◦ case, τ ≥ 0⇒ Ω = eEo
cm = Ω0

First,
u1 = c sinh Ω0τ (59)

and for v1

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ, (60)

The solution for v1 is:

v1 = cτ0Ω0 cosh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
. (61)
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The Solution of the Equation of Motion with a Step
Electric Field in the x1 Direction within Hammond Theory

Finally,

w1 = c sinh Ω0τ + τ0v
1

= c sinh Ω0τ + cτ0Ω0 cosh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
. (62)

Following the same method, we obtain

w0 = c cosh Ω0τ + cτ0Ω0 sinh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
.

(63)
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Graph of w1 vs τ with a Step Electric Field within
Hammond Theory, Ω = 1 and τ0 = 0.1
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Figure 10: w1 for step electric field in the x1 direction within Hammond
theory.
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Graph of w0 vs τ with a Step Electric Field within
Hammond Theory, Ω = 1 and τ0 = 0.1
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Figure 11: w0 for step electric field in the x1 direction within Hammond
theory.
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Comparison between the Lorentz and LL, and the
Hammond Solutions for the Constant Electric field
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Figure 12: w1 for Constant Electric Field for Lorentz and LL (in blue)
and for Hammond (in red)
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Figure 13: w0 for constant electric field for Lorentz and LL (in blue) and
for Hammond (in red)

G. Ares et al. — 42/64



Comparison between the Lorentz and the LL, and the
Hammond Solutions for the Step Electric field
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Figure 14: w1 for step electric field for Lorentz (in blue), LL (in green)
and for Hammond (in red)
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Comparison between the Lorentz and the LL, and the
Hammond Solutions for the Step Electric field
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Figure 15: w0 for step electric field for Lorentz (in blue), LL (in green)
and for Hammond (in red)
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The Electromagnetic Pulse, Lorentz Case

Let us now consider a polarized electromagnetic pulse, in the x
direction (x = x1); that is:

−→
E = Eh (kz − ωt) x̂, (64)

where E is a constant. The corresponding magnetic field is:

−→
B = Eh (kz − ωt) ŷ. (65)

By making the following scale transformations xµ → xµ/L,
t→ tc/L, Fµν → Fµν/E with L = λ/2π and by making the
following scale transformations xµ → xµ/L, t→ tc/L,
Fµν → Fµν/E with L = λ/2π, we have
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The Electromagnetic Pulse, Lorentz Case

h =
1

w
e−((z−t)/w)2 cos (Ω (z − t)) (66)

Let us put a = eEh
mc , then the Lorentz equation can be written as

dw0

dτ
= ahwx, (67)

dwx
dτ

= ah (w0 − wz) , (68)

dwy
dτ

= 0, (69)

dwz
dτ

= ahwx. (70)
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The Electromagnetic Pulse, Lorentz Case

From Eqs. (67) and (69)

dw0

dτ
=
dwz
dτ

(71)

Integrating τ = 0 a τ

w0 (τ)− w0 (0) = wz (τ)− wz (0) ,

which can be written as

w0 (τ) = 1 + wz (τ) , (72)

By using the initial conditions, w0 (0)− wz (0) = 1, and
integrating Eq.(72), we obtain

τ = t− z, (73)

which represents an important result.
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The Electromagnetic Pulse, Lorentz Case

Then, we can write

h =
1

w
e−(τ/w)2 cos (Ωτ) (74)

where w and Ω represent dimensionless parameters related with
the wavenumber and the frequency, respectively.
The solutions are (with the same initials conditions, but including
w2(0) = w3(0) = 0)

w0 = 1 + a2E2, w1 = aE ,
w2 = 0, w3 = a2E2, (75)

where,

E(τ) =

τ/w∫
−∞

e−ζ
2

cos (2Λζ) dζ.
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The Electromagnetic Pulse, the LL Case

For the same electric pulse, LL are

dw0

dτ
= a

(
h+ τ0

•
h

)
w1 + τ0a

2h2(w0 − w3)(1− w0(w0 − w1)),

dw1

dτ
= a

(
h+ τ0

•
h

)
(wo − w3)− τ0a

2h2(w0 − w3)2w1,

dw2

dτ
= −τ0a

2h2(w0 − w3)2w2, (76)

dw3

dτ
= a

(
h+ τ0

•
h

)
v1 + τ0a

2h2(w0 − w3)(1− w3(w0 − w1))
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The Electromagnetic Pulse, Hammond LD Case

For the same pulse, Hammond first use a variation of the
Lorentz-Dirac equation [LD] [7] that we will call it the Hammond
LD case and consists of using the following equation:

dwσ

dτ
= aF σµwµ + τo

[
d

dτ
(aF σµwµ) +

( •
w
µ •
wµ

)
wσ
]

+O(τ2
o ),

(77)
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The Electromagnetic Pulse, Hammond LD Case

For the same pulse, the equations are:

dw0

dτ
= ahw1 + τoa

2
•
hE − τo

a4h2E2

2
,

dw1

dτ
= ah(w0 − w3) + τoa

•
h− τoa3h2E ,

dw2

dτ
= 0, (78)

dw3

dτ
= ahw1 + τoa

2
•
hE + τoa

2h2 − τo
a4h2E2

2
,

The next figures are obtained putting λ = 5, Ω = 0.1, w = 2λ/Ω,
with an intensity I = 1022.
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w0 for the Electromagnetic Pulse for Lorentz Case, LL and
Hammond LD
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Figure 16: w0 for the electromagnetic pulse: Lorentz in blue, Hammond
LD in red and LL in green
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Close-up of w0 for the Electromagnetic Pulse for Lorentz,
LL and Hammond LD
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Figure 17: Close-up of the interval (150,250), w0 for the electromagnetic
pulse: Lorentz in blue, Hammond LD in red and LL in green
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w1 for the Electromagnetic Pulse for Lorentz, Landau and
Hammond LD
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Figure 18: w1 for the electromagnetic pulse: Lorentz in blue, Hammond
LD in red and LL in green
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w3 for the Electromagnetic Pulse for Lorentz, Landau and
Hammond LD
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Figure 19: w3 for the electromagnetic pulse: Lorentz in blue, Hammond
LD in red and LL in green, W 2 = 0
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Close-up of w3 for the Electromagnetic Pulse: Lorentz in
blue, Hammond LD in red and LL in green
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Figure 20: Close-up of the interval (150,250), w3 for the Electromagnetic
pulse: Lorentz in blue, Hammond LD in red and LL in green
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The Electromagnetic Pulse, Hammond Approximation Case

Finally, Hammond applied it method for the same pulse but
making the following approximation

φ,µ <<
wµ

c2

dφ

dτ
. (79)

This is similar with the assumption done by Shen [14] for the
Lorentz Dirac equation by neglecting the Schott term.
Neverthelees, although he obtained similar results to the ones
obtained by using the Hammond LD method, the results obtained
for the LL and the Eliezer-Ford-O’Connell [EFO] [12], [13] are
completely different.
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Graph of the Electromagnetic Pulse, Hammond
Approximation in blue, LL in green and EFO in red

Figure 21: w3 Hammond Approximation in blue, LL in green and EFO in
red
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Discussion

Hammond [11] compared the Eliezer-Ford-O’Connell [12], [13], the
LL and Hammond results obtaining that for high intense pulses it
is possible to experimentally measure the gain of net energy
predicted by the Hammond theory described by analyzing the final
w3 components of each case (see figure 2 in [11]).
It has to be noticed that the Lawson-Woodward theorem that
states, if radiation reaction is excluded, the particle gains no net
momentum from the pulse. This happens when we consider the
Lorentz solution.
Also, it has to be highlighted that the LL solutions is very similar
to Hammond LD approximation in our solutions.
We notice too that Hammond predicts a different result than ours
for the w3 component which practically coincides with the
Hammond LD solutions.
Hammond did not obtain a correct descriptions of the LL and EFO
solutions.
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Hammond did not obtain a correct descriptions of the LL and EFO
solutions.
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Discussion

For the constant magnetic field, it has been proved that the decay
time and trajectories are similar for the Hammond theory [10] and
the LL [15]; that is:

tdecay ∝ 1/τow
2. (80)

For the central field case, it has been shown that Hammond theory
and LL are equivalent [16].
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Discussion

Finally, we can conclude that the big difference between Hammond
theory and LL is the result about the constant force paradox.
However, it is all based on Hammond’s ignorance of Schott’s
energy coming from the field itself generated in the vicinity of the
charged particle. In truth, this term causes that in some cases the
particle is pushed but always keeping the energy balance.
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Discussion

This apparent paradox is explained by other authors by noticing
that the radiation exits at the infinity; that is, the energy radiated
to infinity is taken from the attached fields (The Schott term or
the acceleration energy) and consequently even if the total
radiation term in the equation of motion vanishes, the radiation to
the infinity (the irreversible emission of radiation) exists. Moreover,
by using similar arguments, DeWitt and Brehme explain this
phenomenon in his generalization to General Relativity of the
damping term [17].
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Discussion

Moreover, second, a Landau-Lifshitz-like equation [18] in General
Relativity has been proposed supporting the validity of the
Landau-Lifshitz equation in Special Relativity.
Finally, and perhaps the most important argument to support the
Landau-Lifshitz equation has been done by Krivitskíı et al [19] by
showing that the radiation reaction term represents an average
radiation reaction force in Quantum Electrodynamics.
Due to the nondifferential character of the term wµ

c2
dφ
dτ , it is

impossible to give an equivalent equation of motion for the
Hammond theory.
We can conclude that the Landau-Lifshitz equation of motion for a
spinless point-like charged particle represents the best proposal to
describe the motion of such particles in Classical Electrodynamics.
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