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Abstract

The motions of a spinless point-like charged particle predicted
by the Landau-Lifshitz equation and the Hammond method are
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Abstract

The motions of a spinless point-like charged particle predicted
by the Landau-Lifshitz equation and the Hammond method are
obtained for a step electric field and an elecromagnetic pulse
by using analytical and numerical solutions.

In addition to Hammond method not presenting the so-called
constant force paradox, using step force brings out the
apparent physical contradictions of Landau-Lifshitz equation
regarding energy conservation.

Unlike other cases, the electromagnetic pulse shows another
fundamental difference between the two models.

Finally, an analysis of the Hammond method is made.
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Introduction

In 1938, Dirac [1] proposed a relativistic equation which includes
the radiation reaction force for a spinless point-like charged
particle.
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Introduction

In 1938, Dirac [1] proposed a relativistic equation which includes
the radiation reaction force for a spinless point-like charged
particle.

Being a third-order differential equation, it do present solutions
with physical anomalies such as self-accelerations and
pre-accelerations.

In recent years, the Landau-Lifshitz equation [LL] [2] has been
considered by many authors as the best equation to describe the
motion of a spinless point-like charged particle including the
radiation reaction force within the framework of Classical
Electrodynamics.

The LL is a second-order differential equation and it does not
present solutions with physical anomalies such as self-accelerations
and pre-accelerations that exist in Dirac's theory.
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Different Proposals [3] (see Fig. 1)

Equation of Motion

* = (e/me)FMus + G*

LAD G = 1 (¥ + vhipi%/c?)

LL Gt = 1o ((e/me) P v, + (e/me) (FH1E,Pug + F¥ o F,Pogot) /)
FO G = +(em/me) (£ (F*us) = vy (F0,) /)

MP G = (e1/c)FP7 iy + (262/3m2cS) Y7, 00"

SW G" = —rouyten

HL G" = —m %%/

GH = 0(7)70 (#* + L ia07)

G = b4 — 3/

Figure 1: LAD=Lorentz-Dirac; LL=Landau-Lifshitz; FO=Ford-O’Connel;

MP=Mo-Papas; SW=Steiger-Woods; HL=Hartemann-Luhman;
Y=Yaghjian; H=Hammond
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Purpose

Hammond [3] noticed that when the LL is considered to describe
the motion of a charged particle submitted to a constant electric
field, the radiation reaction force vanishes and the solution is
identical to the one obtained by using the Lorentz equation.
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Purpose

Hammond [3] noticed that when the LL is considered to describe
the motion of a charged particle submitted to a constant electric
field, the radiation reaction force vanishes and the solution is
identical to the one obtained by using the Lorentz equation.

This is called the constant force paradox [4] [5].

Consequently, he proposed another method to describe the motion
of a charged particle.

The purpose of this article consists of making a comparison
between Hammond method and the LL.

G. Ares et al



The Landau-Lifshitz Equation

The Landau-Lifshitz equation of motion for a charged point
particle is [2]
ma* = (q/c)F*w,

+70 [L(Gawwy — (¢/em) F* Fouw®) + (¢%/¢*m) F2wt] (1)
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The Landau-Lifshitz Equation

The Landau-Lifshitz equation of motion for a charged point
particle is [2]

ma* = (q/c)F*w,
+7o [4(%ax wwy — (g/cm) F* Fayw®) + (% /c*m) F?wh] (1)

And after some algebra by defining [5],

wHw?
A (w) = g — ——, (2)
we obtain
OF,
mat = EF’“’w,, + mToA‘“’(w)i iFyaFO‘ﬂw,g + wPw® ===
c mce | me OxP
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The Constant Force Paradox

Consider the radiation reaction term for a constant electric field E,

A (wp) [55 [Fra] [FO7] wg + whuwe e ]
= A (wp) [ [Fia'] [F7] wg] - (4)
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The Constant Force Paradox

Consider the radiation reaction term for a constant electric field E,

AR (wp) [z [Fua] [F7] wg + wPw® ]

= AW (w,) [ [FE] [F*P] wg] . (4)
Then,
AR (w,) [ [Fua] [F*P] wg + wPw® ke ]
= (" — 2F5) x [3%: [Foa] [F7] wg]
— E2uh (1 . é) —0. (5)
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The Constant Force Paradox

Therefore, for the constant electric force, the LL is equivalent to
the Lorentz equation of motion.
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The Constant Force Paradox

Therefore, for the constant electric force, the LL is equivalent to
the Lorentz equation of motion.

No radiation reaction force.

If we consider the electric field in the = direction, the equations

turn to be
d 0
dul _eE 1o
dr mc
dw! el 0
= = =0 6
dr mc w’ (6)
where () = If we |mpose the initial conditions for the

4— veloczty, w® = ¢ and w!' = 0, the well-known solutions are

w® = ccosh Q1

w! = ¢sinh Q7. (7)
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Graph of w! vs 7 for the Lorentz and the LL equations for
() = 1 with a Constant Electric Field

-0.5 r 0.5

Figure 2: w! for the constant electric field in the z! direction by using

the Lorentz and LL equations
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Graph of w” vs 7 for the Lorentz and LL Equations for
() = 1 with a Constant Electric Field

1 P T
-0.5 r 0.5

Ll §

Figure 3: w® for the constant electric field in the z! direction by using
the Lorentz and LL equations
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Step Force for the Lorentz Equation

Let us consider an electric field in the z! direction which behaves
as a step function; that is:

0 for T<0
E:{ E, for T7>0 }:EOH(T) (8)
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Step Force for the Lorentz Equation

Let us consider an electric field in the z! direction which behaves
as a step function; that is:

_ 0 for T<0 _
E_{ E, for T>0 }_EOH(T) (8)
The solutions for the Lorentz equation are simple:
1° case, 7 < 0.
The solution is
w'=0 and W' =c 9)

2° case, T > 0.
The solution is

w! = ¢sinh Q7 and w® = ccosh Qr (10)
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Graph of w! vs 7 for the Lorentz Equation 2 = 1 with a
Step Electric Field

0.8+
0.6
0.4
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Figure 4: w! for the step electric field in the x! direction by using the

| arentz eauation
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Graph of w® vs 7 for the Lorentz Equation 2 = 1 with a
Step Electric Field

-0.5 r 0.5

Lo

Figure 5: w® for the step electric field in the x! direction by using the
| orentz eauation
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Step Force for the LL

By using the LL, Eq. (3), for the step electric field, we have for w!

1
ddif = QH(7)w’
dw®
+TOQ |:5(T)’LUO + H(T)?]
+7, 02 H (1)%w?, (11)
and for w?,
0
ddif = QH(r)w!
dw?
1 [
+7,0 [5(7’)11; + H(T) I ]
+7,Q2H ()%, (12)
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Step Force for the LL

These equations can be reduced in a simple fashion by using the
fact that the LL reaction term vanishes with the constraint that at
7 = 0 the d-function creates a jump and it turns out to consider
the Lorentz equation just with different initial conditions due to
the jump in each step.
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Step Force for the LL

These equations can be reduced in a simple fashion by using the
fact that the LL reaction term vanishes with the constraint that at
7 = 0 the d-function creates a jump and it turns out to consider
the Lorentz equation just with different initial conditions due to
the jump in each step.

Another way of solving the equation just consists in proposing a
general solution of the type:

w! = ¢sinh ¥ and w® = ccosh U, (13)

where ¥ = (7). Introducing Eq. (13) into Egs. (11) and (12),
we obtain: .
U = Q(H(7)) + 102(5(7)), (14)

which coincides with the result found by Baylis and Huschilt [6] for
the LL equation.

G. Ares et al 15/64



Step Force for the LL

After a simple integration, considering the initial conditions, we
arrive to:

0 for T<0
\IJ_{ Qr + Qr, for 7>0 } )
Therefore, we have two cases:

1° case, 7 < 0
The solutions are

wt=0 and w’ = ¢ (16)

20 case, 7> 0
The solutions are

w! = csinh (Q (7 + 7)) and  w® = ccosh (Q (7 + 10))

G. Ares et al. — 16/64



Graph of w' vs 7 for LL, Q = 1 with a Step Electric Field

l L L L L n n i i
~05 F 0.5

Figure 6: w! for the step electric field in the 2! direction by using the LL
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Graph of w? vs 7 for the LL, = 1 with a Step Electric
Field

-0.5 % 0.5

Figure 7: w® for the step electric field in the z! direction by using the LL
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Hammond Theory

The constant force paradox encouraged Hammond to develop a
theory which avoids it [3], [7], [8]. [9], [10], [11].
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Hammond Theory

The constant force paradox encouraged Hammond to develop a
theory which avoids it [3], [7], [8]. [9], [10], [11].
He began by proposing an equation of this type

dwH e
— = —FM, o 18
dr me wo + f ()

where the radiation reaction force f* is described by
w do
b=t — ——. 1

It has to be pointed out that d does not represent an exact
differential as it happens with the heat in Thermodynamic. This
point represents a correction to Hammond theory. Indeed, we will
see that ¢ = ¢(x,, w,); that is:

do _ 9¢ dgp _ 0¢ 0¢

— = — d — = —ay,. 20
dr Oz, Wn an dr Oz, 7 ow, U (20)
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Hammond Theory

Physically, this is consistent with the fact that non exact

differentials are always connected with no reversible processes as

the radiation. Then,
_ dwt

1
@ =22 = %F‘”wa + gt . (21)

Following Hammond [11] but including our correction, we arrive at:

d
R —¢ = %w# with P =—1,ma
dr Oz,

2 = —7,ma,at.

(22)
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Hammond Theory

Physically, this is consistent with the fact that non exact
differentials are always connected with no reversible processes as
the radiation. Then,

e 1
P me TR T Ema

Following Hammond [11] but including our correction, we arrive at:

d
= d¢ gj Wy, with P=—1,ma® = i T
o %
(22)
Then,
d¢p = Pdr = —1omauadr = —tom dZ_“ d;;_ T. (23)
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Constant Electric Field in the z! Direction within
Hammond Theory

In order to analyze the constant electric field in the z! direction
and to be able to solve Eq. (21) it is necessary to make the
following approximation (first order in 7,): The Lorentz
acceleration is taken to evaluate the P; that is:

2
B = =gyl = =i ((i) Fa,,w”Fo‘ng)
cm
2
cm
2 2
— rom—E’ = 1,—E%. (24)
m m
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Constant Electric Field in the z! Direction within
Hammond Theory

In order to analyze the constant electric field in the z! direction
and to be able to solve Eq. (21) it is necessary to make the
following approximation (first order in 7,): The Lorentz
acceleration is taken to evaluate the P; that is:

2
B = =gyl = =i ((i) Fa,,w”Fo‘ng)
cm
2
cm
2 2
— rom—E’ = 1,—E%. (24)
m m

Therefore,

2
d¢ = Pdr = TO%EQCZT. (25)
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Constant Electric Field in the z! Direction within
Hammond Theory

Knowing that,

dt
dr = —, 26
5 (26)
we must have
¢ ¢ ¢
dop = —d —dxg+ —d
¢ dz,, = Oxg + ox1 =
= ¢%xo + ¢lday
dt P P P
= Pdr=P— = —dt = —d(ct) = —duxy. (27)

Y g e e

G. Ares et al. — 22/64



Constant Electric Field in the z! Direction within
Hammond Theory

By using Egs. (23) y (27), we have

2

P
9 _p_r S 0= g slo0. ()
dr m ye
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Constant Electric Field in the z! Direction within
Hammond Theory

By using Egs. (23) y (27), we have
2
P
W _p_;Cm =L s sl
dr m

On the other hand,
| *a
wy, (¢,# — w__d)) = wuqb’“ _ Wyw _¢

2 dr
¢ dp

Wy — — Wy—— =
w w
By, ol

0.

(28)

(29)

This result used in Eq. (21) permits to check the balance of energy.
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Constant Electric Field in the z! Direction within
Hammond Theory

By using Egs. (23) y (27), we have

2

P
9 _p_r S 0= g slo0. ()
dr m ye

On the other hand,
| *a
wy, (¢,# — w__d)) = wuqb’“ _ Wyw _¢

2 dr c2 dr
o 0¢
= . 2
w# 8£E #8.’1,‘# =0 ( 9)

This result used in Eq. (21) permits to check the balance of energy.
It has to be remembered that in general ¢ = ¢(x#, w*). However,
op P e?

2
¢° = == To—E? = 7,——E2, (30)
Z0 'yc ’ycm yem
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Constant Electric Field in the z! Direction within
Hammond Theory

Had we used d¢, we will have

(0= 55) - mer =g
28
= Wt —wu gt — au%
= a“8 # 0. (31)

If we analyze Eq. (30), we can notice that q§ = ¢(wy) since yc = wy.
Moreover, Eq. (29) will not be accomplished and the balance of
energy will be not satisfied. Therefore, we must use d¢.
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Constant Electric Field in the z! Direction within
Hammond Theory

Had we used d¢, we will have

(0= 55) - mer =g
28
= Wt —wu gt — au%
= a“8 # 0. (31)

If we analyze Eq. (30), we can notice that q§ = ¢(wy) since yc = wy.
Moreover, Eq. (29) will not be accomplished and the balance of
energy will be not satisfied. Therefore, we must use d¢.

Finally, the radiation reaction term depends on the trajectory as it

is expected.
G. Ares et al. — 24 /64




The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

We are able to express the equations of motion in such a case

du® eE 1P wd
dr cm m~yc c*m

dw® E 1P 1P
Yot — 2y, (32)

dr mc myc mc
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

We are able to express the equations of motion in such a case

T

duw? el i 1P wY

dr em' T mac  ém
dw®  eE 1P 1P
Y R M 1) (32)
dr mc myc mc
We obtain p
c%ﬂzeE—i—; — P~. (33)
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

For 2!, by using Q2 = eF/mec, we arrive at

vt
dr
vt
dr
That is,

1
oy, 4 Lt Lw 90
me m c2 dr
el e2
m_cwo —Towl = 2E2.

dw?!

(34)

(35)

G. Ares et al. —
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

Let us propose
wh = u! + 7o (36)

Therefore, Eq. (35) can be written as
dw! B d (ul + TO’Ul)

_ 0 0y 2.1 1
e I —Q(u -|-TOU) 7o) (u + Tov ) (37)
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

Let us propose
wh = u! + 7o (36)
Therefore, Eq. (35) can be written as
dw! B d (ul + TO’Ul)
dr dr
On the other hand, developing the identity w,w" = 1,
1

=0 (uo + TOUO) —7,0% (ul + Tovl) . (37)

1 = wowo + wiw
= (ug + Tovo) (uo + 7'01)0) + (u1 + Tov1) (ul + To’l)l) ,
= wuou’ 4+ uut + 279 [uovo +upv'] + 78 (vov® + vivt),
By comparing the coefficients of 7 and 7, we obtain
ugr® + ugvt = 0, (38)
vovo + vlvl = 0.
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

Therefore,
1 upr? w0
voo= = =10
(5} u
(v9)? = —wo! = ()2

Then, from Eq. (35), we have
d (ul < TO’Ul)
dr

Developing in terms of 7,, we obtain

1 1
% = Qu° and % =’ — Q%

=Q (uo + TOUO) — 7,02 (ul + Tovl) .

(39)
(40)

(41)

(42)

G. Ares et al. —
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The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

Since the electric field is constant in ! direction,

0 X
di = Ou® = u = ccoshQr and di = Qu® = u! = ¢sinh Q7.
dr dr
(43)
Therefore,
d_vl — WY = —cQ?sinh Qr (44)
dr N '

Then, we need to express v°

From Eq. (67), we have

in order to solve the last equation.

1
'1)0 = %'I}l. (45)
Then, ) 1
CZL _ Q%Ul = —c0?sinh Q7. (46)
-

G. Ares et al. — 29/64




The Equation of Motion for the Constant Electric Field in
the 2! Direction within Hammond Theory

By using Eq. (43), we arrive at

1
Ciii — Qtanh (Q7) v! = —cQ?sinh Q7. (47)

T

The solution is

1 2QT1
vl = o0 cosh Qr <QT —1In ( —|—2e )) . (48)
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The Solution of the Equation of Motion for the Constant
Electric Field in the 2! Direction within Hammond Theory

Finally, the solution for w! is:

w!' = ¢sinhQr + ot

) 14+ eZQ‘r
= ¢sinh Q7 + erpQ cosh Q7 | Q7 — In 5 (49)
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The Solution of the Equation of Motion for the Constant
Electric Field in the 2! Direction within Hammond Theory

Finally, the solution for w! is:

w!' = ¢sinhQr + ot

) 14+ eZQ‘r
= ¢sinh Q7 + erpQ cosh Q7 | Q7 — In — (49)

Now, we need to obtain w®. We have:

0 0
R C e L

dr  cm myc c2m

By substituting P, we obtain

0
dd% = Qu' + 7,02 (% — w0> . (50)

G. Ares et al. — 31/64



The Solution of the Equation of Motion for the Constant
Electric Field in the 2! Direction within Hammond Theory

By using Eq. (36) into Ec. (50), with w® = u® + 7,0° , we have

dw® B dud + 7,0°

= @ (ul + 7'01)1)

dr dr
2
47,02 [ ———— — W0+ 700
u® + 7,00
d 0 d 0 2
% + TO% = Qu'+ Qv + 7,02 (% — uo) (51)
Therefore,
du® 1 dv’® 1 o 0
We can assure that:
u® = ccosh Qr. (53)

G. Ares et al. — 32/64



The Solution of the Equation of Motion for the Constant
Electric Field in the 2! Direction within Hammond Theory

Instead of solving directly Eq. (52), from Eq. (70), v° = %vl, we
can deduce

1 1 207
0 = u—ovl = tanh (Q7) v! = Qsinh Q7 (QT —1In (—l—_e))
u

2
(54)
Finally,

0 . 1 + 62QT
w = ccosh Q7 + cp2sinh Q7 | Q7 —In — /) (55)
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Graph of w! vs 7 with a Constant Electric Field within
Hammond Theory, 2 =1 and 1y = 0.1

-0.5 r 0.5

Figure 8: w! for the constant electric field in the 2! direction within

Hammaond theorv
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Graph of w” vs 7 with a Constant Electric Field within
Hammond Theory, 2 =1 and 1y = 0.1

L
-0.5

A
F 05

Figure 9: w” for the constant electric field in the 2! direction within
Hammond theorv
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The Equation of Motion for the Step Electric Field in the
x! Direction within Hammond Theory

We must now obtain the motion of a charge within Hammond
theory in the case of a step electric field in 2! direction. Therefore,
we use the electric field described in Eq. (8). Eq. (47) is still valid
dv' 1 2 o
o Qtanh (Q7) v' = —cQ”sinh Qr,
=
but with a different €2,

_ 0 for 7<0
Q_{%zﬂo for 7>0 9]

The problem can be divided in two cases:
1°case, 7<0=0Q=0
Then, Eq. (47) can be written as

dv?

— =0. 7

dr 0 (57)
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The Equation of Motion for the Step Electric Field in the
x! Direction within Hammond Theory

Then,

— =0=>w'=0. (58)
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The Equation of Motion for the Step Electric Field in the
x! Direction within Hammond Theory

Then,

dw

— =0=>w'=0

dr v
2°case, 7> 0= Q= @—QO
First,

u' = esinh Qy7
and for v?
Cfii — Qtanh (Q7) v! = —cQ?sinh O,
-

The solution for v! is:

vt = er9Qp cosh Qo7 (QOT —1In (

1 + eZQOT

2

)

(58)

(59)

(60)

G. Ares et al. —
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The Solution of the Equation of Motion with a Step
Electric Field in the 2! Direction within Hammond Theory

Finally,

w! = ¢sinh Qp7 + 0!

1 + eZQOT
= csinh Qo7 + 1900 cosh Qo7 (QOT —In (T)) . (62)

Following the same method, we obtain

1 + 2%
w® = ccosh Qo7 + 190 sinh Qp7 (QOT —In (T)) .
(63)
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Graph of w' vs 7 with a Step Electric Field within
Hammond Theory, 2 =1 and 1y = 0.1

0.8
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Figure 10: w' for step electric field in the ' direction within Hammond

theorv
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Graph of w® vs 7 with a Step Electric Field within
Hammond Theory, 2 =1 and 1y = 0.1

-0.5

> T
0.5

Figure 11: w® for step electric field in the z! direction within Hammond

theorv
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Comparison between the Lorentz and LL, and the
Hammond Solutions for the Constant Electric field

-0.5 r 0.5

Figure 12: w! for Constant Electric Field for Lorentz and LL (in blue)

and for Hammond (in red)
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Comparison between the Lorentz and the LL, and
Hammond Solutions for the Constant Electric field
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Figure 13: w" for constant electric field for Lorentz and LL (in blue) and
for Hammond (in red)
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Comparison between the Lorentz and the LL, and the
Hammond Solutions for the Step Electric field
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Figure 14: w! for step electric field for Lorentz (in blue), LL (in green)

and for Hammand (in red)
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Comparison between the Lorentz and the LL, and the
Hammond Solutions for the Step Electric field
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Figure 15: w? for step electric field for Lorentz (in blue), LL (in green)
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The Electromagnetic Pulse, Lorentz Case

Let us now consider a polarized electromagnetic pulse, in the x
direction (x = z!); that is:

E = Eh (kz — wi) &, (64)
where FE is a constant. The corresponding magnetic field is:

B = Eh (k2 — wt) §. (65)
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The Electromagnetic Pulse, Lorentz Case

Let us now consider a polarized electromagnetic pulse, in the x
direction (x = z!); that is:

E = Eh (kz — wi) &, (64)
where FE is a constant. The corresponding magnetic field is:

B = Eh (k2 — wt) §. (65)

By making the following scale transformations z# — z* /L,

t —tc/L, F* — F* /E with L = \/27 and by making the
following scale transformations * — z# /L, t — tc/L,

Fr — FH /B with L = \/27, we have
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The Electromagnetic Pulse, Lorentz Case

Let us put a = &

w

dwo
dr
dw,
dr
dwy
dr
dw,

dr

h= L0/ o5 (2 — 1))

ahw,,
ah (wo — w;),
0,

ahw,.

(66)

55‘ then the Lorentz equation can be written as

(67)
(68)
(69)

(70)
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The Electromagnetic Pulse, Lorentz Case

From Eqs. (67) and (69)

dwy  dw,

= 71

dr dr (71)
Integrating 7 =0a 7

wo (1) — wo (0) = w2 (1) — w2 (0),
which can be written as
wo (1) =1+ w (7), (72)

By using the initial conditions, wg (0) — w, (0) =1, and
integrating Eq.(72), we obtain

T=t-—2, (73)

which represents an important result.
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The Electromagnetic Pulse, Lorentz Case

Then, we can write

h= Lo /P o5 () (74)
w

where w and €2 represent dimensionless parameters related with
the wavenumber and the frequency, respectively.

G. Ares et al. — 48/64



The Electromagnetic Pulse, Lorentz Case

Then, we can write

b= L=/ cos () (74)
w

where w and €2 represent dimensionless parameters related with
the wavenumber and the frequency, respectively.

The solutions are (with the same initials conditions, but including
w?(0) = w?(0) = 0)

w0:1+a252, wlzag,
w? =0, w? = a’£?, (75)
where,
T/w
E(r) = / e~ cos (2A¢) dC.
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The Electromagnetic Pulse, the LL Case

For the same electric pulse, LL are

du” .

di = a (h + T()h) w! + 10a?h? (w® — w)(1 — wO(w® — wl)),
-

dw' h o_ 3 2720, 0 _ 312, 1

- = ¢ h+ 1oh | (w° — w?) — Tpa“h*(w” — w’)*w",
=

d 2

—;U = —ra’h?(w® — w)?w?, (76)
=

dw? AN 2720, 0 3 300 _ o1

- = a h+ 1oh | v- + 1pa“h*(w” — w’)(1 — w(w” — w"))
-
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The Electromagnetic Pulse, Hammond LD Case

For the same pulse, Hammond first use a variation of the
Lorentz-Dirac equation [LD] [7] that we will call it the Hammond
LD case and consists of using the following equation:

dw?
dr

o d - ol e &
=aF “wu + 7o [E (CLF “wu) ar (w wy,) w :| + O(T02)7
(77)
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The Electromagnetic Pulse, Hammond LD Case

For the same pulse, the equations are:

dw” . 4p202

@ _ ahw! + 1oa’hE — Toa g ,

dr 2

dw' 0 3 ? 312

— = ah(w” —w”) + 1,ah — T,a°h°E,
-

dw?

" = 0 78

LA (78)
3 - 41202

dw = ahw' + 1,0*hE + Toa2h? — TOa e ,

dr 2

The next figures are obtained putting A =5, Q = 0.1, w = 2) /1),
with an intensity 1 = 10?2
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w" for the Electromagnetic Pulse for Lorentz Case, LL and
Hammond LD

T

-100 -50 50 100

Figure 16: w for the electromagnetic pulse: Lorentz in blue, Hammond
LD in red and LL in green
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Close-up of w" for the Electromagnetic Pulse for Lorentz,
LL and Hammond LD
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1.006 |
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| T o~ I .
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Figure 17: Close-up of the interval (150,250), w? for the electromagnetic
pulse: Lorentz in blue, Hommond LD in red and LL in green

G. Ares et al. — 53/64



w! for the Electromagnetic Pulse for Lorentz, Landau and
Hammond LD

>
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w? for the Electromagnetic Pulse for Lorentz, Landau
Hammond LD

-100 -50 50 100

Figure 19: w3 for the electromagnetic pulse: Lorentz in blue, Hammond
LD in red and LL in green, W2 =0
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Close-up of w? for the Electromagnetic Pulse: Lorentz in
blue, Hammond LD in red and LL in green

0.15

0.10

LU NA n P S S S NS S S

‘ 120 140 160 180 200 220 240

T

Figure 20: Close-up of the interval (150,250), w? for the Electromagnetic
pulse: Lorentz in blue, Hommond LD in red and LL in green
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The Electromagnetic Pulse, Hammond Approximation Case

Finally, Hammond applied it method for the same pulse but
making the following approximation

w
ot << 2 (79)

This is similar with the assumption done by Shen [14] for the
Lorentz Dirac equation by neglecting the Schott term.
Neverthelees, although he obtained similar results to the ones
obtained by using the Hammond LD method, the results obtained
for the LL and the Eliezer-Ford-O'Connell [EFO] [12], [13] are
completely different.
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Graph of the Electromagnetic Pulse, Hammond
Approximation in blue, LL in green and EFO in red

Figure 21: w3 Hammond Approximation in blue, LL in green and EFO in

red
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Discussion

Hammond [11] compared the Eliezer-Ford-O'Connell [12], [13], the
LL and Hammond results obtaining that for high intense pulses it
is possible to experimentally measure the gain of net energy
predicted by the Hammond theory described by analyzing the final
w3 components of each case (see figure 2 in [11]).
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Lorentz solution.
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to Hammond LD approximation in our solutions.

We notice too that Hammond predicts a different result than ours
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Discussion

Hammond [11] compared the Eliezer-Ford-O'Connell [12], [13], the
LL and Hammond results obtaining that for high intense pulses it
is possible to experimentally measure the gain of net energy
predicted by the Hammond theory described by analyzing the final
w3 components of each case (see figure 2 in [11]).

It has to be noticed that the Lawson-Woodward theorem that
states, if radiation reaction is excluded, the particle gains no net
momentum from the pulse. This happens when we consider the
Lorentz solution.

Also, it has to be highlighted that the LL solutions is very similar
to Hammond LD approximation in our solutions.

We notice too that Hammond predicts a different result than ours
for the w? component which practically coincides with the
Hammond LD solutions.

Hammond did not obtain a correct descriptions of the LL and EFO
solutions.
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Discussion

For the constant magnetic field, it has been proved that the decay
time and trajectories are similar for the Hammond theory [10] and
the LL [15]; that is:

Uity B 1/Tow2. (80)
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Discussion

For the constant magnetic field, it has been proved that the decay
time and trajectories are similar for the Hammond theory [10] and
the LL [15]; that is:

Uity B 1/Tow2. (80)

For the central field case, it has been shown that Hammond theory
and LL are equivalent [16].
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Discussion

Finally, we can conclude that the big difference between Hammond
theory and LL is the result about the constant force paradox.
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Discussion

Finally, we can conclude that the big difference between Hammond
theory and LL is the result about the constant force paradox.
However, it is all based on Hammond'’s ignorance of Schott’s
energy coming from the field itself generated in the vicinity of the
charged particle. In truth, this term causes that in some cases the
particle is pushed but always keeping the energy balance.
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Discussion

This apparent paradox is explained by other authors by noticing
that the radiation exits at the infinity; that is, the energy radiated
to infinity is taken from the attached fields (The Schott term or
the acceleration energy) and consequently even if the total
radiation term in the equation of motion vanishes, the radiation to
the infinity (the irreversible emission of radiation) exists. Moreover,
by using similar arguments, DeWitt and Brehme explain this
phenomenon in his generalization to General Relativity of the
damping term [17].
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Discussion

Moreover, second, a Landau-Lifshitz-like equation [18] in General
Relativity has been proposed supporting the validity of the
Landau-Lifshitz equation in Special Relativity.
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Discussion

Moreover, second, a Landau-Lifshitz-like equation [18] in General
Relativity has been proposed supporting the validity of the
Landau-Lifshitz equation in Special Relativity.

Finally, and perhaps the most important argument to support the
Landau-Lifshitz equation has been done by Krivitskii et al [19] by
showing that the radiation reaction term represents an average
radiation reaction force in Quantum Electrodynamics.

Due to the nondifferential character of the term Td¢' it is
impossible to give an equivalent equation of motion for the
Hammond theory.

We can conclude that the Landau-Lifshitz equation of motion for a
spinless point-like charged particle represents the best proposal to
describe the motion of such particles in Classical Electrodynamics.
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