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Overview

• This talk will highlight three features of the 
Bottema 2015 and Carrignan 2013 Surveys:

1. Rotation Curves for MOND, Conformal 
Gravity (CG) and MLS (to be explained).

2. Tully Fisher Analysis for MOND and CG.

3. Radial Acceleration Rule (RAR) for MOND, CG 
and MLS.



Review of Rotation Curves









Some Real Examples: (Begeman1986)

NGC 3198 DDO 154

In each rotation curve, rotational velocity v is plotted against radial distance from the center of the galaxy.  
In each of the above, we can see that the observation does not match the prediction.





Point mass to galaxy disk



The Dark Matter Solution

• In order to solve this problem, if we observe 
the formula below, the only unknown is the 
mass.  So what if we placed more mass in the 
galaxy at the right distance.

The only issue however is that if we do this, the mass would have to go 
inexactly the right place as to not overshoot the inner regions.



Milky Way



Cold Dark Matter Halo



Dark Matter Formalism

• Thus, what if we add in a function which 
matches the flatness of the rotation curves at 
large distances, with two free parameters, a 
density and another falloff gradient,

data at all, then from the measured galactic rotational velocities alone it would not be possible to infer

an inverse square gravitational law at all.36

6.2 The dark matter solution for galaxies

Given the prior experience with first the prediction and then the discovery of the planet Neptune, it was

most natural to try to explain the galactic mass discrepancies by positing the presence of non-luminous

dark matter in galaxies. In fact, there was already some theoretical basis for doing so since Ostriker and

Peebles [26] had suggested that there should be non-luminous spherical halos (non-luminous since there

was no sign of any luminous such halos of the size they envisaged) surrounding unbarred spiral galaxies,

due to the fact that in Newtonian gravity such disk shaped structures would not be gravitationally

stable, though spherical ones would. However, any such stabilizing halo would only need to envelop the

optical disk in order to stabilize it and would thus have no immediate need to extend beyond four disk

scale lengths or so. Moreover, since both elliptical galaxies and clusters of galaxies are also found to have

mass discrepancies, it would appear that whatever is causing such spherically shaped systems to possess

these discrepancies, it could not be stability since such spherical distributions of luminous Newtonian

matter are perfectly capable of being stable on their own. Nonetheless, the difficulty with not taking

galactic dark matter to be spherically distributed is that if it were also to lie in a disk then it would

not be stable either. With the measured rotational velocities far exceeding the luminous Newtonian

contributions in the outer galactic regions, within Newtonian gravity any proposed dark matter which

would be capable of affecting the shape of the rotation curves in those outer regions would explicitly

have to be located in those selfsame regions itself. Moreover, with the measured velocities in the outer

galactic regions being at least twice as big as the luminous Newtonian contributions, the dark matter

contribution to the v2/R centripetal accelerations would thus have to be three to four times as big as

the luminous one. Thus not only would dark matter have to be located in precisely the region where

there are very few stars, the total amount of dark matter in galaxies would have to greatly exceed the

total amount of visible matter, matter which itself is predominantly located in the inner region optical

disk. In this sense then the galactic dark matter solution is not entirely equivalent to the Neptune

solution to the solar system Uranus problem, since the Neptune modification to solar system orbits was

a very minor modification to the Newtonian gravity produced by the sun and not an ef fect which was of

the same order as it. From the point of view of gravity theory, a modification to the galactic luminous

Newtonian expectation which is comparable with it in magnitude is a quite drastic modification, while

from the point of view of observational astronomy, the notion that such a huge amount of matter is

not only not optically observable but is not even predominantly located in the region occupied by the

visible stars is equally drastic, to thus underscore how very serious the dark matter problem is.

Beyond the actual assumption of the existence of galactic dark matter at all, its explicit use in

galaxies still leaves much to be desired. Specifically, in order to actually fit the galactic rotation curve

data explicitly using dark matter, it is conventional to take the spherical dark matter density σ(r) to

be the distribution associated with an isothermal Newtonian sphere in hydrostatic equilibrium, viz.

σ(r) =
σ0

(r2 + r20)
, (117)

as modified by the introduction of a core radius r0 to prevent the distribution from diverging at r = 0.

Given such a distribution, the associated centripetal accelerations in the galactic plane are given by

(see e.g. Eq. (A29))

v2dark
R

= gdarkβ =
4πβ∗c2σ0

R
1 −

r0

R
arctan

R

r0
. (118)

36It is amusing to ponder how gravity theory might have evolved if the earth had been the only object in orbit around

the sun.
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While Eq. (118) leads to rotation curves which are asymptotically flat, an actual fitting to an observed

flat rotation curve (such as the high luminosity ones displayed in Fig. 1) is not automatically achievable

simply by adding gdarkβ to glumβ of Eq. (115). Rather, the two free parameters in gdarkβ have to be adjusted

galaxy by galaxy. As we see from a typical galaxy such as NGC 3198, the observed rotation curve is

pretty flat from the inner region peak near R = 2.2R0 where (c.f. Eq. (115))

v2lum ∼
0.4N∗β∗c2

R0

, v4lum ∼ 0.32πΣ0β
∗2c4 N∗ , (119)

all the way out to the last detected point at R ∼ 10R0. While the asymptotic limit of Eq. (118) leads

to

v2dark → 4πβ∗c2σ0 , (120)

there is no apparent reason why the dark matter σ0 should be related to the luminous parameters N∗

and R0 via

σ0 =
N∗

10πR0

, (121)

and yet without such a fine-tuning between the dark halo and optical disk parameters, the asymptotic

halo contribution would not match the inner region peak velocity at all, being either larger or smaller

than it. Moreover, even if this particular fine-tuning is invoked, at best that would only match the

velocity at R = 2.2R0 to the velocity at r = 10R0 and not require the rotation curve to be flat at

all points in between. To achieve such intermediate region flatness, in addition it is necessary to also

fine-tune the halo core radius parameter r0 as well (so as to match at R = 6R0 or so), and only after

this is also done is the flatness of the rotation curve over the entire 2.2R0 ≤ R ≤ 10R0 region then

secured. Unsatisfactory as this use of two fine-tuned parameters is, the situation is even worse than

that since such a fine-tuning has to be made individually for each and every galaxy; and while a two

parameter per galaxy prescription is basically found to work well phenomenologically for the rotation

curves that have so far been observed, at two halo parameters per galaxy this would already lead to 22

free halo parameters for just the eleven galaxy sample of Fig. 1 alone.

Beyond the isothermal sphere shape for σ0, numerical N-body cold dark matter (CDM) simulations

of hierarchical clustering have also yielded halos, of which the typical one found by Navarro, Frenk and

White [27, 28] is quite close in form to the profile

σ(r) =
σ0

r(r + r0)2
. (122)

Unlike the halos of Eq. (117), with the halos of Eq. (122) being cuspy ones which diverge at r = 0,

they make a quite substantial (though still finite) contribution to rotational velocities in the inner

region, and have been criticized on this score [29] since they are found to have some dif f iculty in fitting

galaxies such as dwarfs and low surface brightness galaxies37 where the inner region luminous Newtonian

contribution is small, a region where the true nature of the halo should then be manifest. Moreover,

even though these cuspy dark matter halos do provide good fitting to high surface brightness galaxies,

since these particular halos would contribute in the inner region, getting good fitting in the high surface

brightness case entails giving up the nice accounting of the inner region which the luminous Newtonian

contribution provides, and instead requiring an interplay between dark and luminous matter even in

that region. Very recently attempts have been made to remedy the cuspiness problem [30, 31] leading

to halos close in form to

σ(r) = σ0exp −
2

α

rn

rns
− 1 , (123)

37Viz. galaxies with a small N∗ or a small central surface brightness Σ0.
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The asymptotic limit (large radii) of the above yield the dark matter 
contribution to velocity as, 
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was no sign of any luminous such halos of the size they envisaged) surrounding unbarred spiral galaxies,

due to the fact that in Newtonian gravity such disk shaped structures would not be gravitationally

stable, though spherical ones would. However, any such stabilizing halo would only need to envelop the

optical disk in order to stabilize it and would thus have no immediate need to extend beyond four disk

scale lengths or so. Moreover, since both elliptical galaxies and clusters of galaxies are also found to have

mass discrepancies, it would appear that whatever is causing such spherically shaped systems to possess

these discrepancies, it could not be stability since such spherical distributions of luminous Newtonian

matter are perfectly capable of being stable on their own. Nonetheless, the difficulty with not taking

galactic dark matter to be spherically distributed is that if it were also to lie in a disk then it would

not be stable either. With the measured rotational velocities far exceeding the luminous Newtonian

contributions in the outer galactic regions, within Newtonian gravity any proposed dark matter which

would be capable of affecting the shape of the rotation curves in those outer regions would explicitly
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While Eq. (118) leads to rotation curves which are asymptotically flat, an actual fitting to an observed

flat rotation curve (such as the high luminosity ones displayed in Fig. 1) is not automatically achievable

simply by adding gdarkβ to glumβ of Eq. (115). Rather, the two free parameters in gdarkβ have to be adjusted

galaxy by galaxy. As we see from a typical galaxy such as NGC 3198, the observed rotation curve is

pretty flat from the inner region peak near R = 2.2R0 where (c.f. Eq. (115))
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, v4lum ∼ 0.32πΣ0β
∗2c4 N∗ , (119)

all the way out to the last detected point at R ∼ 10R0. While the asymptotic limit of Eq. (118) leads

to

v2dark → 4πβ∗c2σ0 , (120)

there is no apparent reason why the dark matter σ0 should be related to the luminous parameters N∗

and R0 via

σ0 =
N∗

10πR0

, (121)

and yet without such a fine-tuning between the dark halo and optical disk parameters, the asymptotic

halo contribution would not match the inner region peak velocity at all, being either larger or smaller

than it. Moreover, even if this particular fine-tuning is invoked, at best that would only match the

velocity at R = 2.2R0 to the velocity at r = 10R0 and not require the rotation curve to be flat at

all points in between. To achieve such intermediate region flatness, in addition it is necessary to also

fine-tune the halo core radius parameter r0 as well (so as to match at R = 6R0 or so), and only after

this is also done is the flatness of the rotation curve over the entire 2.2R0 ≤ R ≤ 10R0 region then

secured. Unsatisfactory as this use of two fine-tuned parameters is, the situation is even worse than

that since such a fine-tuning has to be made individually for each and every galaxy; and while a two

parameter per galaxy prescription is basically found to work well phenomenologically for the rotation

curves that have so far been observed, at two halo parameters per galaxy this would already lead to 22

free halo parameters for just the eleven galaxy sample of Fig. 1 alone.

Beyond the isothermal sphere shape for σ0, numerical N-body cold dark matter (CDM) simulations

of hierarchical clustering have also yielded halos, of which the typical one found by Navarro, Frenk and

White [27, 28] is quite close in form to the profile

σ(r) =
σ0

r(r + r0)2
. (122)

Unlike the halos of Eq. (117), with the halos of Eq. (122) being cuspy ones which diverge at r = 0,

they make a quite substantial (though still finite) contribution to rotational velocities in the inner

region, and have been criticized on this score [29] since they are found to have some dif f iculty in fitting

galaxies such as dwarfs and low surface brightness galaxies37 where the inner region luminous Newtonian

contribution is small, a region where the true nature of the halo should then be manifest. Moreover,

even though these cuspy dark matter halos do provide good fitting to high surface brightness galaxies,

since these particular halos would contribute in the inner region, getting good fitting in the high surface

brightness case entails giving up the nice accounting of the inner region which the luminous Newtonian

contribution provides, and instead requiring an interplay between dark and luminous matter even in

that region. Very recently attempts have been made to remedy the cuspiness problem [30, 31] leading

to halos close in form to

σ(r) = σ0exp −
2

α

rn

rns
− 1 , (123)

37Viz. galaxies with a small N∗ or a small central surface brightness Σ0.
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The Radial Acceleration Rule



Radial Acceleration Relation (RAR) of 
MLS



MLS - RAR

• Used the SPARC data 
set of 153 galaxies, 
2693 data points in 
total.

• For each data point, 
showed:

• Plotted 



Centripetal Acceleration



RAR



RAR



MLS Solution Summary

From the above, we can back solve for the rotational velocity 
predicted by the baryons at a particular distance, which allows for 
the construction of rotation curves using the MLS fitting function.  
This will be used in fits belwo.



Conformal Gravity



Conformal Theory

where:

The Conformal Theory was originally developed by Weyl, and later re-

explored by Mannheim and Kazanas.  It is a fourth order, scale invarient 

renormalizable gravitational theory:



Conformal Theory

The Schwarzschild like solution in conformal theory can be solved via:



Conformal Theory



Conformal theory - Global

Since the conformal theory uses a fourth Poisson equation, we are not free to 
use only the local considerations as in Newtonian gravity.

We thus need to include a contribution from the cosmology, and in-homogeneities 
to the cosmology. 



Cosmology term

We can implement a Robertson Walker metric in static coordinates via the following 
transformation

Brings the metric to the following form,

which we can see can be written as conformal to flat, as



Cosmology Term cont’d.

So in a topologically open RW cosmology, we 
introduce the universal linear potential, hence

With three space Curvature K=

Since the transformed metric is conformally equivalent to a co-moving Robertson 
Walker Metric, with spatial curvature written below, then when written as a static 
coordinate system, the co-moving conformal cosmology behaves just like a static 
metric with universal linear and quadratic potentials. 

In Mannheim’s original fits, the k (quadratic term) was left out, so 
that:



Conformal Gravity

where:

The Conformal Theory was originally developed by Weyl, and later re-

explored by Mannheim and Kazanas.  It is a fourth order, scale invarient

renormalizable gravitational theory:



Rotation Curves in CG

• Summary: The total conformal gravity curve 
(local and global combined:



The Samples

• Bottema et. Al. 2015

• Carrignan et. Al.  2013



Bottema 2015

• Survey Consisting of 12 “high resolution”, well 
studied rotation curves.

• Survey spans a diverse mix of dwarf and large 
spiral galaxies.

• All galaxies have “well known” distances.

• Some galaxies in the sample are bulge 
galaxies.

• “Problematic” for alternative gravity (MOND).



Columns: Galaxy Name, Distance (NED Average with no TF), Scale 
Length, Gas Mass (including helium), CG predicted Mass, M/L ration 
using CG mass, scaled centripetal acceleration of last data point, 
MOND predicted mass, M/L using MOND mass.



Plots 

• Next slide shows the Bottema galaxies with 
the Conformal gravity predicted mass.

• Blue Curve=Conformal Gravity

• Red Curve=MOND

• Green Curve=MLS

• Dashed=Newtonian no dark matter



Blue=CG
Red=MOND
Green=MLS
Dashed=Ne
wtonian



Plots 

• Next slide shows the Bottema galaxies with 
the MONDpredicted mass.

• Blue Curve=Conformal Gravity

• Red Curve=MOND

• Green Curve=MLS

• Dashed=Newtonian no dark matter



Blue=CG
Red=MOND
Green=MLS
Dashed=Ne
wtonian



Carrignan 2013

• Survey Consisting of 15 “high resolution”, well 
studied rotation curves (some overlap with 
Bottema).

• Survey spans a diverse mix of dwarf and large 
spiral galaxies.

• Used different distance methods than Bottema.

• Some galaxies in the sample are bulge galaxies.

• “Problematic” for alternative gravity (MOND).



Columns: Galaxy Name, Distance (NED Average with no TF), Scale Length, Gas Mass 
(including helium), CG predicted Mass, M/L ration using CG mass, scaled centripetal 
acceleration of last data point, MOND predicted mass, M/L using MOND mass.



Plots 

• Next slide shows the Carrignan galaxies with 
the Conformal gravity predicted mass.

• Blue Curve=Conformal Gravity

• Red Curve=MOND

• Green Curve=MLS

• Dashed=Newtonian no dark matter



Blue=CG
Red=MOND
Green=MLS
Dashed=Ne
wtonian



Plots 

• Next slide shows the Carrignan Sample with 
the MOND predicted mass.

• Blue Curve=Conformal Gravity

• Red Curve=MOND

• Green Curve=MLS

• Dashed=Newtonian no dark matter



Blue=CG
Red=MOND
Green=MLS
Dashed=Ne
wtonian



Tully Fisher Relation

• An Empirical Observation that shows that for 
“flat or flattening” rotation curves, 

in the “outer regions”.

• There is currently no formalism for this, simply 
an observation

• Similar to Kepler’s 3rd law before Newton.



Notes about Tully Fisher

• Currently no “prediction” in standard theory.

• Has been more recently adopted to being 
called the “Baryonic Tully Fisher” relation, 
which includes gas and stars into the relation 
(helps with dwarf galaxies to fit the TF)

• MOND and standard theory typically use TF to 
bound mass and or constrain distance**

• Conformal gravity has a testable and falsifiable 
deviation from pure TF.



TF in CG 

Take the Asymptotic Limit, and neglect the k term.

Such that

where



TF

Since most galaxies, have 



Analysis of the two samples

Above:  TF relation for the last data point in 
each galaxy using the CG predicted mass.
Green=Pure TF 
Orange=CG deviation from TF

Above:  TF relation for the last data point in 
each galaxy using the MOND predicted 
mass.
Green=Pure TF 
Orange=CG deviation from TF



Summary of TF

• Using latest distances that do not reference TF 
to find the distance, only few galaxies show 
deviation from pure TF.

• Both predicted masses show deviation from 
TF in large galaxies that fit with the CG 
deviation.

• Larger galaxies using cepheids may lead to 
more observable deviations.



Importance of the Deviation

What we are proposing here is two-fold for TF:
1. CG can explain the relationship and provide bounds in a straightforward 

manner.
2. If we accept this premise, we can perhaps use CG as a method for 

removing an age old problem in Rotation Curve Physics, namely 
distance estimates.





RAR analysis



RAR using CG9
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F igur e 7. Fig. 7(a) shows the Baryonic Tully Fisher

plot for CG with bulges while 7(b) shows the same plot for

CG with bulges and the bounding CG values, where in both

figures the last observed velocity was used.
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(c)

F igur e 8. Fig. 8(a) shows the point by point comparison

of (gNEW , gOBS), with the blue points using the mass pre-

dicted by CG . Fig. 8(b) shows the same points with the

CG predict ion overlaid in purple. Fig. 8(c) shows the point

by point comparison of (gNEW , gCG). The line of unity is

shown in red in all three plots.
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of (gNEW , gOBS), with the blue points using the mass pre-

dicted by CG . Fig. 8(b) shows the same points with the
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by point comparison of (gNEW , gCG). T he line of unity is

shown in red in all three plots.
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dicted by CG . Fig. 8(b) shows the same points with the

CG predict ion overlaid in purple. Fig. 8(c) shows the point

by point comparison of (gNEW , gCG). T he line of unity is

shown in red in all three plots.

Blue=All data points RAR with 
CG mass
Purple=CG prediction overlaid 
on the RAR
Orange=CG as the predictor for 
the baryons (no dark matter)



RAR in MOND
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Brown=All data points 
RAR for MOND mass
Purple=MOND prediction 
overlaid on the RAR
Orange=MOND as the 
predictor for the baryons 
(no dark matter)
Green line=MLS



Conclusions on RAR

• Both MOND and CG can capture the RAR 
without the need for dark matter

• Fitting function described by MLS has a free 
parameter, and even using MOND masses is 
not a correct line of best fit.

• When fit with NED distance, we have shown 
the MLS parameter can change by up to a 
factor of four in previous work using a 
larger data set.



• Using latest distance estimates, both MOND 
and  CG can account for the two surveys 
quite well in Rotation curves, TF and RAR.

• TF should only be used as a test, not a given, 
and CG now allows for deviations to be 
shown in the data.

• The initial RAR formalism does not 
completely align with CG or MOND, but both 
can give a fundamental prediction for RAR 
without the need for dark matter.

Overall Conclusions



Future Work

• Comparisons of MLS, CG, MOND predictions 
on more individual samples: (see James G. 
O'Brien et al 2018 ApJ 852 6)

• Posit CG as a test to remove circular argument 
of TF for distance estimates.  Code writing for 
this is already underway



Thank you

• Questions?

References:


