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Abstract

The basic formulation of the Stueckelberg-Horwitz-Piron classical and quantum the-
ory is described in the framework of special relativity. The theory is then embedded into
the manifold of general relativity. The canonical momentum operator is constructed on
the manifold, and is seen to have a similar structure to the Newton Wigner position oper-
ator in Klein Gordon theory. The Fourier transform on the manifold is then constructed
and proved consistent. The quantum theory is then developed in the convenient bra-ket
formalism of Dirac. Quantum field theory is then formulated using the construction of a
Fock space. Finally, the spin of a particle is defined on the manifold using a theorem of
Abraham, Marsden and Ratiu, and its consequences for entanglement are discussed.

0. Introduction

Stueckelberg(1941) wrote down a covariant canonical formulation of classical and
quantum mechanics for special relativity with a Hamiltonian on the phase space {xµ, pν}.
He envisaged the motion of an event in spacetime generated by dynamical laws as tracing
out the worldline of a particle. This concept opens the possibility that free motion can
carry an event in a straight line in the direction of positive time, but interaction may result
in a turning of the line, through a spacelike interval, after which it may proceed in the
negative direction of time. Thus the trajectory of the event would not be a single valued
function of the time t. He therefore introduced an invariant parameter τ running mono-
tonically along the worldline which then becomes the parameter entering the differential
equations of motion. The particle world line corresponding to the motion of the event in

* Part of this work has been reported in (Horwitz 2020)
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the negative direction of time is interpreted, following Dirac (as discussed in (Dirac 1947))
as an antiparticle moving in the positive direction of time. The resulting configuration, as
stated by Stueckelberg (1941), corresponds to pair annihilation in classical mechanics.

For a Hamiltonian of the form (with metric (−1,+1,+1,+1))

K =
pµp

µ

2M
+ V (x), (0.1)

with V (x) a scalar function, the (covariant) Hamilton equations yield

ẋµ =
∂K

∂pµ
=
pµ

M
(0.2)

and

ṗµ = − ∂K
∂xµ

= −∂V (x)
∂xµ

(0.3)

These equations reduce to the usual nonrelativistic form in the nonrelativistic limit.
We see from (0.2) that

ẋµẋµ = − ds
2

dτ2
=
pµp

µ

M2
, (0.4)

so that the proper time squared ds2 is equal to dτ2 when the mass squared m2 ≡= −pµpµ
of the particle is equal to M2 (called “on shell”). Similar arguments follow when pµ is
replaced by the gauge invariant pµ − eAµ in the usual electromagnetic form.

Horwitz and Piron (1973) generalized this theory to be applicable to the N body prob-
lem (to be called SHP), permitting treatment of many interesting applications (Horwitz
and Arshansky 2018). The invariant parameter τ is therefore called the world time.

In this paper, I describe the embedding of this theory into the manifold of general rel-
ativity (Horwitz 2019); the proof of the existence of the Fourier transform makes possible
the formulation of a quantum theory and quantum field theory on the manifold (Hor-
witz 2020). We discuss here also a formulation of spin on the manifold and phenomena
associated with entanglement.

1. Single particle in external potential

The Hamiltonian of Stueckelbeg, Horwitz and Piron (SHP) (Horwitz 2015a) is

K =
1

2M
ηµνπµπν + V (ξ) (1.1)

where ηµν is the flat Minkowski metric (−+ ++) and πµ, ξ
µ are the spacetime canonical

momenta and coordinates in the local tangent space of the manifold of general relativity
(GR).

The existence of a potential term (which may be a Lorentz scalar), representing non-
gravitational forces, implies that the “free fall” condition is replaced by a local dynamics
carried along by the free falling system.
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The Hamilton equations are

ξ̇µ =
∂K

∂πµ
π̇µ = − ∂K

∂ξµ
= − ∂V

∂ξµ
, (1.2)

where the dot indicates d
dτ . Since then

ξ̇µ =
1
M
ηµνπν ,

or πν = ηνµMξ̇µ,
(1.3)

the Hamiltonian can be written as

K =
M

2
ηµν ξ̇

µξ̇ν + V (ξ). (1.4)

To carry out the embedding, for {x} in the manifold of GR,

dξµ =
∂ξµ

∂xλ
dxλ (1.5)

so that
ξ̇µ =

∂ξµ

∂xλ
ẋλ. (1.6)

The Hamiltonian then becomes

K =
M

2
gµν ẋ

µẋν + V (x), (1.7)

where V (x) is the potential at the point ξ corresponding to the point x and

gµν = ηλσ
∂ξλ

∂xµ
∂ξσ

∂xν
(1.8)

The corresponding Lagrangian is then

L =
M

2
gµν ẋ

µẋν − V (x), (1.9)

The canonical momentum (da Silva 2006) is gven by

pµ =
∂ξλ

∂xµ
πλ. (1.10)

This definition has transformation properties consistent with those of the momentum de-
fined by the Lagrangian (1.9):

pµ =
∂L(x, ẋ)
∂ẋµ

, (1.11)
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yielding
pµ = Mgµν ẋ

ν . (1.12)

With the usual definition (Weinberg 19720

Γσλγ =
∂xσ

∂ξµ
∂2ξµ

∂xλ∂xγ
(1.13)

we obtain, from the Hamilton equations applied to the geometrical Hamiltonian the mod-
ified geodesic type equation

ẍσ = −Γσλγ ẋγ ẋλ −
1
M
gσλ

∂V (x)
∂xλ

, (1.14)

Moreover, from (1.12), pµ = Mgµλgλν ẋ
ν = Mẋµ. Therefore,

ṗσ = Mẍσ = −MΓσλγ ẋγ ẋλ − gσλ
∂V (x)
∂xλ

, (1.15)

a force along the geodesic curve.
The Poisson bracket is

dF (ξ, π)
dτ

=
∂F (ξ, π)
∂ξµ

ξ̇µ +
∂F (ξ, π)
∂πν

π̇µ

=
∂F (ξ, π)
∂ξµ

∂K

∂πµ
− ∂F (ξ, π)

∂πµ

∂K

∂ξν

≡ [F,K]PB(ξ, π).

(1.16)

If we replace in this formula
∂

∂ξµ
=
∂xλ

∂ξµ
∂

∂xλ

∂

∂πµ
=
∂ξµ

∂xλ
∂

∂pλ
,

(1.17)

we obtain
dF (ξ, π)
dτ

=
∂F

∂xµ
∂K

∂pµ
− ∂F

∂pµ

∂K

∂xν
≡ [F,K]PB(x, p) (1.18)

In this definition of Poisson bracket we have, as for the ξµ, πν relation,

[xµ, pν ]PB(x, p) = δµν . (1.19)

[pµ, F (x)]PB = − ∂F
∂xµ

, (1.20)

so that pµ acts infinitesimally as the generator of translation along the coordinate curves*
and

[xµ, F (p)]PB =
∂F (p)
∂pµ

, (1.21)

* In a geodesically complete manifold, which we shall assume here, the coordinates may
be taken to be geodesic curves.
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so that xµ is the generator of translations in pµ.
We have therefore established a classical canonical mechanics which, following Dirac

(1947), can be the basis for a quantum theory, as we discuss below.

2. The many body system with interaction potential

The many body Hamiltonian of the SHP theory is

K = ΣNi=1

1
2Mi

ηµνπµiπνi + V (ξ1, ξ2, . . . ξN ), (2.1)

Following the same procedure as above,

K = ΣNi=1

Mi

2
gµν(xi)ẋ

µ
i ẋ

ν
i + V (x1, x2, . . . xN ), (2.2)

with corresponding Lagrangian

L = ΣNi=1

Mi

2
gµν(xi)ẋ

µ
i ẋ

ν
i − V (x1, x2, . . . xN ). (2.3)

The second order equations for the orbits in spacetime can be written as

ẍσi = −Γσλγ(xi)ẋ
γ
i ẋ

λ
i −

1
Mi

gσλ(xi)
∂V (x1, x2, . . . xN )

∂xλi
. (2.4)

Following the same procedure as before, we obtain the canonical bracket

[xiµ, pjν ]PB = δijδ
µ
ν (2.5)

Then, since p̈µi = Miẍ
µ
i . multiplying by Mi, we obtain

p̈µi = −∂V (x1, x2, . . . xN , p1)
∂xµi

+Migσγ(xi)Γσλµ(xi)ẋ
γ
i ẋ

λ
i . (2.6)

3. Quantum Theory on the Curved Space

The Poisson bracket formulas (1.19) and (1.20) can be considered as a basis for defining
a quantum theory with canonical commutation relations

[xµ, pν ] = ih̄δµν , (3.1)

The Stueckelberg-Schrödinger equation for a wave function ψτ (x) is

i
∂

∂τ
ψτ (x) = Kψτ (x), (3.2)
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where the operator valued Hamiltonian can be taken to be a Hermitian form, on a Hilbert
space defined with scalar product (with invariant measure; we write g = −det{gµν}),

(ψ, χ) =
∫
d4x
√
gψ∗τ (x)χτ (x). (3.3)

It is easily seen that the operator

pµ = −i ∂

∂xµ
− i

2
1√
g(x)

∂

∂xµ

√
g(x) (3.4)

is essentially self-adjoint in the scalar product (3.3), satisfying as well the commutation
relations (3.1). This operator is similar in form to the Newton-Wigner consruction of the
coordinate operator in Klein-Gordon theory, and in the same way can be transformed back
to a simple derivative by a Foldy-Wouthuysen type transformation as we shall do below.

Since pµ defined by (3.4) is Hermitian in the scalar product (3.3), we can write the
Hermitian Hamiltonian as

K =
1

2M
pµg

µνpν + V (x). (3.5)

This construction can be carried over to the many body case directly, i.e, with the
operator properties of the coordinates and momenta

[xµi, pνi] = ih̄δijδ
µ
ν , (3.6)

The scalar product is then

(ψ, χ) =
∫

Πi

{
d4(xi)

√
g(xi)

}
ψ∗τ (x1, x2, . . . xN )χτ (x1, x2, . . . xN ). (3.7)

In this scalar product, the Hamiltonian (with (3.4) for each pµi at xµi)

K = Σi
1

2Mi
pµig

µν(xi)pνi + V (x1, x2, . . . xN ) (3.8)

is essentially self-adjoint.

4. Electromagnetism

To satisfy the reqirement of invariance under local gauge transformations (Horwitz
2015a)

(pµ − a′µ(x, τ))eiΛ(x,τ)ψτ (x) = eiΛ(x,τ)(pµ − aµ(x, τ))ψτ (x). (4.1)

Unless we restrict ourselves to the so-called “Hamilton gauge” (with Λ independent
of τ), the form of the Stueckelberg-Schrödinger implies the existence of a fifth field (Saad
1989) a5(x, τ), for which we must have (in close analogy to the generation of A0 field in
the electromagnetism associated with the nonrelativistic Schrödinger equation)

a′5(x, τ) = a5(x, τ) +
∂

∂τ
Λ(x, τ). (4.2)
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The Stueckelberg-Schrödinger equation then becomes

i
∂

∂τ
ψτ (x) =

{ 1
2M

(pµ − aµ(x, τ))gµν(pν − aν(x, τ))− a5(x, τ)(x)
}
ψτ (x), (4.3)

where the scalar field of the potential model is now replaced by the generally τ dependent
a5(x, τ). This field plays an important role in the study of the self-interaction problem
(Aharonovich 2012).

5. Fourier analysis

To define a consistent quantum theory, we must define a Fourier transform on the
manifiold. For a function f(x) defined almost everywhere on the manifold {x}, we define
the Fourier transform

f̃(p) =
∫
d4x
√
g e−ipµx

µ

f(x), (5.1)

where g = −det gµν and the integral is carried out (in the Riemannian sense) in the limit
of the sum over small spacetime volumes with invariant measure d4x

√
g. The inverse is

f(x) =
1

(2π)4

1√
g(x)

∫
d4peipµx

µ

f̃(p). (5.2)

Note that pµxµ ≡ −p0x
0 + p1x

1 + p2x
2 + p3x

3 is not local diffeomorphism invariant, and
hence not a scalar product, on the manifold. The Fourier transform as we have defined it
is carried out in the framework of a given, arbitrary, coordinatization.

Provided that ∫
d4p e−ipµ(xµ−x′µ) = (2π)4δ4(x− x′), (5.3)

so that
(2π)−4

∫
d4x′

∫
d4p e−ipµ(xµ−x′µ) = 1, (5.4)

we must have, for consistency,

f̃(p) =
1

(2π)4

∫
d4x

∫
d4p′ e−i(pµ−p

′
µ)xµ f̃(p′). (5.5)

We must therefore study the function (in a particular coordinatization {x} and cotan-
gent space {p})

∆(p− p′) ≡ 1
(2π)4

∫
d4x e−i(pµ−p

′
µ)xµ (5.6)

which should act as the distribution δ4(p− p′).
To prove this consistency condition, following the method of Reed and Simon (Reed

1972) in their discussion of Lebesgue integration, we represent the integral as a sum over
small boxes around the set of points {xB} that cover the space (which we have assumed
to be non-compact), and eventually take the limit as for a Riemann-Lebesgue integral.
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In each small box, the coordinatization arises from an invertible transformation from the
local tangent space in that neighborhood. We write

xµ = xB
µ + ηµ ∈ boxB (5.7)

where
ηµ =

∂xµ

∂ξλ
ξλ (5.8)

and ξλ (small) is in the flat local tangent space at xB .
We now write the integral (5.6) as

∆(p− p′) =
1

(2π)4
ΣB
∫
B

d4η e−i(pµ−p
′
µ)(xB

µ+ηµ)

=
1

(2π)4
ΣBe−i(pµ−p

′
µ)xB

µ

∫
B

d4η e−i(pµ−p
′
µ)ηµ .

(5.9)

Let us call the measure at B

∆µ(B, p− p′) =
∫
B

d4η e−i(pµ−p
′
µ)ηµ . (5.10)

In the neighborhood of each B, define

∂xµ

∂ξλ
=
∂ηµ

∂ξλ
≡ aµλ(B), (5.11)

which may be taken to be a constant matrix in each small box. In (5.11), we then have

∆µ(B, p− p′) = det a
∫
B

d4ξ e−i(pµ−p
′
µ)aµλ(B)ξλ . (5.12)

We now make a change of variables for which ξ′
µ = aµλ(B)ξλ; then, since d4ξ′ =

det ad4ξ, we have

∆µ(B, p− p′) =
∫
B′(B)

d4ξ′ ei(pµ−p
′
µ)ξµ

′

. (5.13)

in each box.
We may then write (5.9) as

∆(p− p′) =
1

(2π)4
ΣB e−i(pµ−p

′
µ)xB

µ

∆µ(ξB , p = p′) (5.14)

and consider the set {xB} to be in correspondence with an extended flat space {ξ(xB)},
to obtain***

∆(p− p′) =
1

(2π)4
ΣB e−i(pµ−p

′
µ)ξB

µ

∆µ(ξB , p− p′). (5.15)

*** This procedure is somewhat similar to the method followed in the simpler case of
constant curvature by Georgiev who, however, used eigenvalues of the Laplace-Beltrami
operator.
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Note that the transformation to the local tangent space is, in general, different in each
neighboring box. There would therefore be a volume deficit in the sum which may be diver-
gent. This problem can be solved by constructing neighboring boxes by parallel transport
along and orthogonal to geodesic curves assuming, as we have remarked above, geodesic
completeness. In the limit of small spacetime box volume, the sum (5.15) approaches a
Lebesgue type integral on a flat space

∆(p− p′) =
1

(2π)4

∫
e−i(pµ−p

′
µ)ξµdµ(ξ, p− p′). (5.16)

If the measure is differentiable, we could write,

dµ(ξ, p− p′) = m(ξ, p− p′)d4ξ. (5.17)

In the small box, say, size ε, one can prove, in the limit, that m = 1, so that

∆(p− p′) =
1

(2π)4

∫
e−i(pµ−p

′
µ)ξµd4ξ, (5.18)

or
∆(p− p′) = δ4(p− p′). (5.19)

6. Consequences for the Quantum Theory

The scalar product for the SHPGR Hilbert space (Horwitz 2019) is

(ψ, χ) =
∫
d4x
√
gψ∗τ (x)χτ (x). (6.1)

Replacing all wave functions ψ(x) by g(x)
1
4ψ(x), which we shall call the Foldy-Wouthuysen

representation in coordinate space, the operator (3.4) becomes just −i ∂
∂xµ .

To cast our results in the familiar form of the quantum theory, we write the scalar
product (6.1) as

< ψ|χ >=
∫
d4x < ψ|x >< x|χ >, (6.2)

where
< x|χ > = g(x)

1
4χ(x)

< x|ψ > = g(x)
1
4ψ(x),

(6.3)

(and < ψ|x >=< x|ψ >∗) consistently with (6.2). We now wish to show that the Parseval-
Plancherel (Parseval 1806)(Plancherel 1910)relation holds for the momentum representa-
tion for the integral (6.2).

We define
< x|p >=

1

(2π)4g(x)
1
4
eipµx

µ

(6.4)
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and
< p|x >= g(x)

1
4 e−ipµx

µ

, (6.5)

which also follows from considering the ket |p > as a limiting case of a sharply defined
function f̃(p) in (5.2) (but in Foldy-Wouthuysen representation). With (6.5) we have∫

d4p < x|p >< p|x′ >= δ4(x− x′). (6.6)

It then follows from (6.5) that

< p|χ > =
∫
d4x < p|x >< x|χ >

=
∫
d4x g(x)

1
4 e−ipµx

µ

g(x)
1
4χ(x)

=
∫
d4x e−ipµx

µ√
g(x)χ(x) = χ̃(p).

(6.7).

Moreover, from (6.4),

< ψ|p > =
∫
d4x < ψ|x >< x|p >

=
∫
d4x g(x)

1
4ψ∗(x)

1

2π4g(x)
1
4
eipµx

µ

=
∫

d4x

(2π)4
eipµx

µ

ψ∗(x) 6= ψ̃∗(p),

(6.8)

with ψ̃(p) as would be defined in (5.1). Note that this is the complex conjugate of < p|ψ >
only in the flat space limit, reflecting the structure of (6.7) and (6.8). This function,
however, serves as the dual of the function < p|ψ > for the construction of the scalar
product contracting, for example, with < p|χ > to give the scalar product, and for χ = ψ,
the norm.

From (6.7) and (6.8), we have∫
d4p < ψ|p >< p|χ > =

∫
d4p

∫
d4x

(2π)4

× eipµx
µ

ψ∗(x)
∫
d4x′ e−ipµx

′µ√
g(x′)χ(x′)

=
∫
d4x
√
g(x) ψ∗(x)χ(x).

(6.9)

This, in fact, completes our explicit proof of the Parseval relation∫
d4x
√
g(x) |ψ(x)|2 =

∫
d4p < ψ|p >< p|ψ > . (6.10)
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Note that < ψ|p >< p|ψ > is not necessarily a positive number; only the integral as-
sures positivity and unitarity of the Fourier transform, since < ψ|p > is not the complex
conjugate of < p|ψ >.

As pointed out above, the operator pµ = −i ∂
∂xµ is essentially self-adjoint in the Foldy-

Wouthuysen representation. We now examine its spectrum. We use the notation {X} and
{P} to distinguish the canonical operators from the numerical parameters.

Since, by definition, we should have

< x|Pµ|ψ >= −i ∂

∂xµ
< x|ψ > (6.11)

we have, by completeness of the spectral family of X,

Pµ|ψ >=
∫
d4x|x >

(
−i ∂

∂xµ
)
< x|ψ >, (6.12)

giving P in operator form in the x−representation. In p−representation, we have, using
the transformation functions above,∫

d4x < p|x > Pλ < x|p′ > =
∫
d4x e−ipµx

µ(
g(x)

1
4Pλg(x)−

1
4
)
eip

′
µx
µ

= pλδ
4(p− p′),

(6.13)

where we recognize the central factor in parentheses as the Foldy-Wouthuysen form of the
momentum operator.

Finally,in the same way, for the canonical coordinate, we should have

< p|Xµ|ψ >= i
∂

∂pµ
< p|ψ > . (6.14)

Then, in the x representation (Xλ commutes with g(x)),∫
d4p < x|p > Xλ < p|x′ > =

∫
d4p

1
(2π)4

eipµx
µ

Xλe−ipµx
′µ

= xλδ4(x− x′).
(6.15)

7. Quantum Field Theory

To define a quantum field theory on the curved space, we shall construct a Fock space
for the many body theory in terms of the direct product of single particle states in momen-
tum space (Horwitz and Arshansky 2018), and define creation and annihilation operators
using the definition of the scalar product. The Fourier transform of these operators is then
used to construct the quantum fields. We have seen in the previous section that for the
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state ψ(x) of a one particle system, the complex conjugate of the state (we suppress the
tilde in the following) in momentum space

ψ∗(p) =
∫
d4x eipµx

µ√
g(x)ψ∗(x) (7.1)

is not equal to the dual < ψ|p >

ψ†(p) =
1

(2π)4

∫
d4x eipµx

µ

ψ∗(x). (7.2)

Here, the dagger is used to indicate the vector dual to ψ(x), necessary, as in Eq. (6.5), to
form the scalar product. In this form, (6.9) can be written as∫

d4pψ1
†(p)ψ2(p) =

∫
d4x
√
g(x) ψ1

∗(x)ψ2(x). (7.3)

In this sense, < p|x > (of (6.5)) is the dual of the (generalized) momentum state < x|p >
in the Foldy-Wouthuysen representation. The operator representations (6.13) and (6.15)
are therefore bilinears in the states and their duals, and, as shown below, correspond to the
second quantized form of the operators, as in the usual form of “second quantization”. Note
that the linear functional L(ψ) of the Riesz theorem (Riesz 1955) that reaches a maximum
for a given ψ0 is given uniquely by the scalar product (7.3), L(ψ) =

∫
d4pψ†(p)0ψ(p).

The many-body Fock space is constructed by representing the N -body wave function
for identical particles on the basis of states of the form, here suitably symmetrized for
Bose-Einstein or Fermi-Dirac statistics at equal τ ,* In the following we work out the
Fermi-Dirac case explicitly;the Bose-Einstein formulation is similar. We define, for the
Fermi-Dirac case,

ΨN,τ (pN , pN−1, . . . p1) =
1
N !

Σ(−1PP ψN ⊗ ψN−1 ⊗ . . .⊗ ψ1)(pN , pN−1 . . . p1), (7.4)

where all states in the direct product are at equal τ (with e.g. Ψ2 = 1
2 (ψ2 ⊗ ψ1 − ψ1 ⊗

ψ2)(p2, p1) = 1
2 (ψ2(p2)ψ1(p1) − ψ1(p2)ψ2(p1))). We work initially in momentum space,

since in this representation the structure is most similar in form to the usual construction.
The Fock space consists of span of the set of the form (7.4), for every N = (0, 1, . . .∞),

where N = 0 is the vacuum state. We now define the creation operator a†(ψN+1 on this
space with the property that**

ΨN+1(pN+1.pN , . . . p1) = a†(ψN+1)ΨN )(pN , pN+1, . . . p1), (7.5)

* Other approaches to quantum field theory on the manifold of general relativity, such
as in (Birrell 1982), introduce a timelike foliation of space time to describe the fields and
their evolution. There is no necessity for us to do this since we have available the universal
invariant parameter τ . The usual specification of a spacelike surface on which a complete
set of local observables {Oτ (x)} commute is then correlated to this τ .
** Here the dagger indicates the Hermitian conjugate in the Fock space scalar product.

We use this notation because its Fock space Hermitian conjugate carries the dual vector
to the scalar product.
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which carries out as well the appropriate antisymmetrization. In order to define the anni-
hilation operator we take the scalar product of this state with an N + 1 particle state

ΦN+1,τ (pN+1, pN , . . . p1) =
1

(N + 1)!
Σ(−1PPφN+1⊗φN⊗. . .⊗ψ1)(pN+1, pN . . . p1), (7.6)

for which
(ΦN+1, a

†(ψN+1)ΨN ) = (a(ψN+1)ΦN+1,ΨN ) (7.7)

where a(ψN+1), the Hermtian conjugate of a†(ψN+1) in the Fock space, is an annihilation
operator that removes the particle in the state ψN+1. This scalar product is defined on
the momentum space by (7.3) term by term, using the dual vectors ψ†, as in (7.3), thus
defining the adjoint on the Fock space.

8. Spin of a Particle in SHPGR and Entanglement

The theory of intrinsic angular momentum of a particle in the framework of relativistic
quantum theory for special relativity was worked out by Arshansky and Horwitz (Arshan-
sky 1989c)following the method of induced representations of Wigner (Wigner 1939) but
with an inducing timelike vector nµ, transforming with the Lorentz group, independent
of momentum. The reason for using nµ instead of pµ is that the induced representation
of the angular momentum on the wave function depends on the inducing vector. When
computing the expectation value of xµ, represented (in momentum space) by i ∂

∂pµ
in the

relativistic quantum theory, this derivative would destroy the unitarity of a representation
induced on pµ. This expectation value would then not transform as a vector under the
Lorentz group.

The generators of the Lorentz group acting both on {xµ} and {nµ} are, in the special
relativistic quantum theory

Mµν = xµpν − xνpν

− i
(
nµ

∂

∂nν
− nν ∂

∂nµ

)
,

(8.1)

where indices are raised and lowered by the Minkowski metric ηµν = (−1,+1,+1,+1).
Under the action of the group generated by this set of operators, Mµν is a Lorentz tensor.
It is essential for the embedding of the special relativistic theory into GR that the set
of local generators transform under the local embedding diffeomorphisms as covariant
tensors. This is clearly true for the {x, p} part of Mµν(for support of the wave function
in GR on small xµ); we shall see by the isomorphism theorem of Abraham, Marsden and
Ratui (Abraham 1988), that nµ transforms contravariantly as well, preserving its timelike
character, under local diffeomorphisms as well.

The spin of a particle is an essentially quantum mechanical property. In the non-
relativistic quantum theory, the lowest non-trivial representation of the rotation group
corresponds to the spin degrees of freedom of the particle. However, for a relativistic par-
ticle, the Lorentz group O(3, 1) or its covering SL(2, C) acts on the wave function.Wigner
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[17] showed that such a representation can be constructed by starting with a particle at
rest so that its four-momentum has just one component, p0 = m, where m is the mass of
the particle (assumed nonzero; the zero mass case, such as for the photon,must be treated
separately). In the four dimensional Minkowsi space this vector lies along the time axis.
The elements of the Lorentz group that leave this vector invariant lie in the subgroup
SO(3) or its covering SU(2), and therefore provide a representation of spin in that frame.
Under a Lorentz boost the vector (p0, 0, 0, 0) may move to a general timelike four vector
pµ, but the action of the group remains the same about this new vector, i.e., it remains in
SU(2). This so-called induced representation is then identified with the intrinsic spin of
the particle. The structure of higher than spin 1/2 states was worked out by Horwitz and
Zellig-Hess (Horwitz 2015b) by means of tensor products in the representation space. As
pointed out there, this mathematical construction can be considered as well to apply to the
total spin states of a many-body system, and, in particular to the spin zero and one states
of a two body system, each with spin 1/2. This coupling of spins is independent of the
spacetime coordinates of the two particles, and therefore provides a basis for entanglement
that can be carried, as we argue below, to the context of general relativity.

We now wish to imbed this structure into the manifold of GR. We first remark that
since the commutation relations of the canonical coordinates and momenta remain the
same under the embedding, the first term in (8.1) remains a valid generator of the Lorentz
group. Its meaning for the particle as an intrinsic property requires that the wave function
has sufficiently small support in spacetime.

We now use a theorem stated in Abraham, Marsden and Ratiu (Abraham 1988):
Under the Cr map ϕ, for X,Y elements of an algebra on an r-manifold, X → X ′ and

Y → Y ′, f a function on the manifold,

([X ′, Y ′][f ]) ◦ ϕ = [X,Y ][f ◦ ϕ (8.2)

establishing an algebraic isomorphism.
In our case,

ϕ : ψn(ξ)→ ψ′n′(x) (8.3)

Defining the angular momentum in a small neighborhood so that the variables ξ can be
considered to be very small, and defining

n′µ =
∂xµ

∂ξλ
nλ, (8.4)

under the local diffeomorphism

ϕ : [Mξ
µν ,Mξ

αβ ]→ [Mx
µν ,Mx

αβ ]. (8.5)

The Lorentz algebra therefore remains under these local diffeomorphisms, and we can follow
the construction of the induced representation for spin just as in the flat Minkowski space.
Moreover, as for the tensor product methods for the construction of higher spin states,
we may consider the representations as corresponding, in the spin space, to the tensor
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products of the states of a many body system, without reference to the coordinatization
of the wave functions. This establishes a basis for entanglement in general relativity.

In particular, we have shown that the momentum operator generates translation along
the coordinates. Choosing coordinates along geodesic curves, we can achieve in this way
parallel transport. For two elementary systems, for example, with spin 1/2, one can
consruct in this way, as argued above. a singlet state of the two body system with the
properties of the Einstein-Podolsky-Rosen (EPR)(Einstein 1935) construction. In this
way, two particles initially in a spin zero state in the spin space, with wave packets moving
coherently along geodesic curves, should maintain the EPR correlations.

An interesting associated question is that of transport of a single particle along a closed
geodesic curve when a gravitational field is enclosed, inducing a change of orientation of
the spin, leading to a Bohm-Aharonov (Aharonov 1959) type effect of interference in the
spin space.
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