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Abstract: Classical electrodynamics is modeled by Maxwell’s equations, as a system of eight

scalar equations in six unknowns, thus appearing to be overdetermined. The no-magnetic-

monopoles equation can be derived from the divergence of Faraday’s law, thus reducing the number

of independent equations to seven. Derivation of Gauss’ law requires an assumption beyond

Maxwell’s equations, which are then overdetermined as seven equations in six unknowns. This

overdetermination causes well-known inconsistencies. Namely, the interface matching condition

between two different media is inconsistent for a surface charge and surface current. Also, the irrota-

tional component of the vector potential is gauged away, contrary to experimental measurements.

These inconsistencies are resolved by extended electrodynamics (EED), as a provably unique system
of 7 equations in 7 unknowns. This paper provides new physical insights into EED, along with

preliminary experimental results that support the theory. VC 2019 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-32.1.112]

R�esum�e: L’�electrodynamique classique (CED) est mod�elis�ee par les �equations de Maxwell,

comme un système de 8 �equations scalaires dans 6 inconnues, apparaissant ainsi �a être

surd�etermin�ee. L’�equation des monopôles non-magn�etiques peut être d�eriv�ee de la divergence de la

Loi de Faraday, r�eduisant ainsi le nombre d’�equations ind�ependantes �a sept. La d�erivation de la Loi

de Gauss exige une hypothèse au-del�a des �equations de Maxwell, qui sont alors surd�etermin�ees

comme sept �equations dans six inconnues. Cette surd�etermination provoque des incoh�erences bien

connues. �A savoir, la condition de correspondance d’interface entre deux moyens diff�erents est

incoh�erente pour une charge de surface et un courant de surface. De plus, la composante irrotation-

nelle du potentiel vectoriel ne peut être mesur�ee, contrairement aux mesures exp�erimentales. Ces

incoh�erences sont r�esolues par l’�electrodynamique �elargi (EED), comme un système provablement
unique de 7 �equations dans 7 inconnues. Cet article fournit des nouvelles id�ees physiques sur

l’EED, ainsi que des r�esultats exp�erimentaux pr�eliminaires qui appuient la th�eorie.
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I. INTRODUCTION

Classical electrodynamics (CED) is the cornerstone of

modern physics. CED provides the foundation for models

of nonlinearity, chaos, complexity, and statistical effects

in electrodynamic systems; bioelectrodynamics; polymers;

plasmas; conductive fluid dynamics; piezo-electric and

piezo-magnetic solids; and computational models thereof.

Maxwell1 wrote CED as 20 partial differential equations

in Cartesian coordinates. Heaviside2 rewrote Maxwell’s

equations in vector calculus form with solutions in terms of

the scalar (U) and vector (A) potentials. Lorenz3 recognized

that wave equations for U and A can be obtained via an

additional constraint (the Lorenz gauge). However,

the Lorenz gauge does not completely eliminate the

arbitrariness in CED, which allows an infinitude of gauge

transformations.4–6

This paper is inspired by the apparent overdetermination

in CED and is organized as follows. Section II summarizes

work on CED overdetermination, which is improperly

“resolved” by flawed circular logic and unwarranted assump-

tions. Section III elucidates CED inconsistencies: disparities

in the interface matching conditions and gauging away of

the gradient component of the vector potential. Section IV

introduces extended electrodynamics7 (EED), together with

previous work on EED. Section V gives basic EED

predictions: compatibility with CED, resolution of the incon-

sistencies in Section III, and charge balance in the classical

limit. Section VI explains EED prediction of the scalar-

longitudinal wave (SLW). Section VII derives the EED

conditions for the scalar wave. Section VIII describes the

revised energy and momentum balance equations under

EED. Section IX discusses preliminary experimental evi-

dence for the SLW: no constraint by the skin effect, 1=r2

attenuation in free space, and isotropic SLW transmission

from a monopole antenna. Section X provides testable pre-

dictions and discussion. Section XI has our conclusions.a)lee.hively314@comcast.net.us
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II. CED OVERDETERMINATION

The vector-calculus form of Maxwell’s equations is8

r • E ¼ q
e

; (1)

r • B ¼ 0; (2)

r� E ¼ � @B

@t
; (3)

r� B� le
@E

@t
¼ lJ: (4)

SI units are used. Bold symbols denote vectors; B and E are

the magnetic and electric field vectors, respectively. The

source terms are the electric charge density ðqÞ and the elec-

trical current density ðJÞ; e and l are the electrical permittiv-

ity and magnetic permeability, respectively (not necessarily

vacuum). Time is denoted by t: Equations (1)–(4) seem over-

determined, involving six unknowns (three scalar compo-

nents for each of B and EÞ and eight equations [one from

each of Eqs. (1) and (2), and three from each of Eqs. (3)

and (4)].

Stratton9 introduced the divergence-curl redundancy to

resolve the overdetermination in CED. Namely, the diver-

gence of Eq. (3) yields10 r •r� E ¼ 0: Then, the partial-

time derivative of r • B is zero, which has the solution as

r • B ¼ FðrÞ; where F is an arbitrary scalar function of spa-

tial location ðrÞ: The only physically meaningful result is

F ¼ 0; as in Eq. (2). The divergence of Eq. (4) uses10

r •r� B ¼ 0 to obtain the form

r • E ¼ � 1

e

ð
dtr • J: (5)

Stratton9 then assumed charge conservation, allowing

replacement of r • J in Eq. (5) with the partial-time deriva-

tive of �q; to obtain Eq. (1). While this assumption seems

reasonable, Section V describes the first-principles, prov-

ably unique derivation of EED7 that yields a modified form

of charge balance. Moreover, charge balance is typically

derived by substituting Eq. (1) into the divergence of

Eq. (4). Liu11 noted this circular logic fallacy, but assumed

second derivatives in Eqs. (1)–(4) to resolve the overdeter-

mination. Arminjon12 also addressed this problem, relying

on the well-known approach of adding ad hoc constraint(s)

or dummy variable(s) to the formulation to avoid charge

nonconservation.13–17 These assumptions9,11,17 hide the fact

that CED is overdetermined, as Sousa and Shumlak17

explicitly state.

III. INCONSISTENCIES IN CED

Equations (1) and (2) have well-known solutions,8 where

A and U are the electrodynamic vector and scalar potentials,

respectively,

B ¼ r� A; (6)

E ¼ �rU� @A

@t
: (7)

Substitution of Eqs. (6) and (7) into Eqs. (1) and (4), and

use of the Lorenz gauge, yields the U� and A� wave

equations8

r2U� @2U
@c2t2

¼ � q
e

; (8)

r2A� @2A

@c2t2
¼ �lJ: (9)

Here, the speed of light is c ¼ ðelÞ�1=2
(not necessarily

in vacuum). Equation (1) has an interface matching

condition8

e2E2n � e1E1n ¼ qA: (10)

Substitution of Eq. (7) into Eq. (10) yields

e2 �rU� @A

@t

� �
2n

� e1 �rU� @A

@t

� �
1n

¼ qA: (11)

The subscript, “n,” denotes the normal component. The

subscripts “1” and “2” identify the two media. Equation (8)

also has a matching condition by taking a Gaussian pill box

with the end faces parallel to the interface in regions 1 and 2.

Noting that r2U ¼ r •rU, one can use the divergence the-

orem in the limit of zero pill-box height to obtain

� erUð Þ2n þ erUð Þ1n ¼ qA: (12)

Here, qA is the surface-charge density at the interface.

The discord between Eqs. (11) and (12) is well-known,18 and

is not due to writing the equations in terms of A and U, since

E and B are gauge invariant.4–6 Section V resolves this

disparity.

The interface matching condition for the tangential com-

ponent (“t”) in Eq. (4) is8

l1B1t � l2B2t ¼ l1 r� Að Þ1t � l2 r� Að Þ2t ¼ JA:

(13)

Equation (9) has a matching condition by taking a

Gaussian pill box with the end faces parallel to the interface

in regions 1 and 2. Noting that r2A ¼ r •rA, one can use

the divergence theorem in the limit of zero pill-box height to

obtain

� n
_

•r
� �

A

l

" #
1

þ n
_

•r
� �

A

l

" #
2

¼ JA: (14)

Here, JA is the surface-current parallel to the interface; n
_

is the unit vector normal to the interface. As before, the dis-

parity between Eqs. (13) and (14) is not due to writing the

equations in terms of A and U, since E and B are gauge

invariant.4–6 Section V also resolves this disparity.

Maxwell’s equations have an arbitrariness in U and A

for Eqs. (6) and (7), under the transformation4

A! AþrK; (15a)

U! U� @K
@t
: (15b)
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“Gauge” is used to describe Eqs. (15a) and (15b), origi-

nally arising from the nonstandard width of railroad track in

the 1800 s (a synonym for “arbitrary”). Equations (15a) and

(15b) leave B and E unchanged, which is termed “gauge

invariance.” A @2-infinitude of choices exists for the gauge

function19 ðKÞ. For example, the velocity gauge is

r • Aþ bel@U=@t ¼ 0. If b ¼ 1, a charge source propagates

at the speed of light (Lorenz gauge). For b ¼ 0, U propagates

at infinite speed (Coulomb gauge). For 0 < b < 1; U propa-

gates at a speed, c=b. Other conditions are equivalent to the

Lorenz gauge with different physical meanings.5,6

CED invariance under Eqs. (15a) and (15b) can be cast

in four-vector form as A� ! A� þ @�K. Here, A� ¼ ðU=c;AÞ
and @� ¼ ð�@=@ct;rÞ with a metric signature of (–,þ,þ,þ).

K is a harmonic, scalar function of space and time that satis-

fies @�@
�K ¼ 0. Thus, the four-gradient component of A� is

gauged away under CED.20,21

The assumption of no four-gradient in A is contrary to

experiments that have measured an irrotational vector poten-

tial.22–25 Section VI shows that an irrotational vector poten-

tial implies an irrotational current density. Moreover, an
irrotational current been observed in (for example): arc dis-

charges,26 ion-concentration-gradient-driven current across

living-cell walls,27 and irrotational, human, electroencepha-

logram current.28 This section has demonstrated three incon-

sistencies in CED: (a) the interface matching condition

between two different media is inconsistent at the theoretical

level for a surface charge (1) and surface current (2); and (b)

the irrotational component of the vector potential is gauged

away, contrary to experimental measurements (3). These

three inconsistencies may not seem compelling in the light

of the success of Maxwell theory in modern physics. How-

ever, falsifiability29 states that a hypothesis (theory) cannot

be proved by favorable evidence, but can only be disproved,

even by a single failure. These disparities require resolution

via EED, as discussed next.

IV. EXTENDED ELECTRODYNAMICS

The Helmholtz theorem8 uniquely decomposes any

three-vector into irrotational and solenoidal parts. For exam-

ple, electrical current density has the form, J ¼ rjþr
�G, with j and G, as scalar and vector space-time func-

tions, respectively. Smooth, Minkowski four-vector fields

also can be uniquely decomposed into four-irrotational and

four-solenoidal parts with tangential and normal components

on the bounding three-surface.30 Woodside31 subsequently

used the Stueckelberg Lagrangian density32

L ¼ � ec2

4
Fl�F

l� þ JlAl � cec2

2
@lAl� �2

� ec2k2

2
AlAl� �

: (16)

Fl� is the Maxwell field tensor; c is the speed of light (not

necessarily vacuum); Jl ¼ ðcq; JÞ is the 4-current; the four-

potential is Al ¼ ðU=c;AÞ; the Compton wave number for a

photon with mass ðmÞ is k ¼ 2pmc=h; and h is Planck’s con-

stant. The fully relativistic Stueckelberg Lagrangian32

includes both A and U, and resolves many issues with previ-

ous CED Lagrangians. For c ¼ 0 and m > 0, Eq. (16) yields

the Maxwell-Proca theory, for which a 2012 test measured

m � 10�54 kg (equivalent to � 10�18 eV), consistent with

massless photons.33 Equation (16) for c ¼ 1 and m ¼ 0 is31

L ¼ ec2

2

1

c2
rUþ @A

@t

� �2

� r� Að Þ2
" #

� qUþ J • A� ec2

2
r • Aþ 1

c2

@U
@t

� �2

: (17)

Equation (17) allows only two classes of four-vector

fields.31 One class of fields has zero four-curl of Al:

Fl� ¼ @lA� � @�Al ¼ 0, with a solution,31 Al ¼ @lK,

together with a nonzero, dynamical, scalar field, C ¼ @lAl

¼ @l@
lK. K is a scalar function of space-time. The second

solution31 has zero four-divergence of Al, C ¼ @lAl ¼ 0, as

the Lorenz gauge, consistent with CED.4 Woodside7 later

proved the uniqueness of Eqs. (18)–(22) [7 equations in 7

unknowns ðB;C;EÞ] that form EED:

E ¼ �rU� @A

@t
; (18)

B ¼ r� A; (19)

C ¼ r•Aþ 1

c2

@U
@t

; (20)

r� B� 1

c2

@E

@t
�rC ¼ lJ; (21)

r•Eþ @C

@t
¼ q

e
: (22)

Equation (18) is equivalent to Faraday’s law; Eq. (19) is

equivalent to the no magnetic-monopoles equation. Equation

(21) uniquely decomposes J into solenoidal ðr � BÞ
and irrotational ðrCÞ parts, in accord with the Helmholtz

theorem.8 Equation (17) implies34 Eqs. (18)–(22). Moreover,

Eqs. (18)–(22) imply7,30,31 Eq. (17). Equation (17) is then

necessary and sufficient for Eqs. (18)–(22). The Lagrangian

for curved space-time35 reduces to Eq. (17) in Minkowski

four-space.

A long history of work exists on EED.7,14,30,31,34–44 Fock

and Podolsky36 wrote the new Lagrangian in 1932 with a

dynamical, scalar field, C ¼ r • Aþ el@U=@t, without

deriving the resultant equations. Ohmura37 first wrote the

dynamical equations in 1956. Aharonov and Bohm34 gave

the revised Lagrangian and Hamiltonian, and derived the

dynamical equations therefrom in 1963. Munz et al.14

showed the use of EED in computational simulations in

1999. Van Vlaenderen and Waser38 used EED to derive a

wave equation for C, and revised forms for momentum and

energy conservation in 2001. Woodside7,30,31 rigorously

derived EED (1999–2009), assuming only Minkowski

four-space. Jim�enez and Maroto35 used Eq. (16) with c ¼ 1

and m ¼ 0 to model quantum, curved space-time, electrody-

namics for an expanding universe in 2011. These

papers7,14,30,31,34–38 cited no previous EED work, and

serve as seven independent verifications of EED theory.
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Modanese44 studied a nonrelativistic, nonlocal, EED quan-

tum source.

Equations (18)–(22) use the least-action principle,7

requiring a finite, lower bound on the Lagrangian, Eq. (17).

The Planck scale45 provides such a bound. Another term

�ðr � AÞ2=2l, in Eq. (17), has the same requirement for a

finite, lower bound, and has been well validated.4,8

V. BASIC EED PREDICTIONS

The B� wave equation arises from the curl of Eq. (21).

Note that10 r�r� B ¼ rðr • BÞ � r2B, which for

Eq. (19), B ¼ r� A, gives r�r� B ¼ �r2B. Faraday’s

law, r� E ¼ �@B=@t, along with10 r�rC ¼ 0 yields

the EED B� wave equation, identical to CED8

r2B� @2B

@c2t2
�w2

B ¼ �lr� J: (23)

The E� wave equation relies on the equivalence of

Eq. (18) to Faraday’s law, to which the curl is applied with10

r�r� E ¼ rðr • EÞ � r2E; replacing r� B from

Eq. (21); substituting for r • E via Eq. (22); and noting that

@rC=@t�r@C=@t ¼ 0. The EED E� wave equation is the

CED result46

r2E� @2E

@c2t2
¼ rq

e
þ l

@J

@t
: (24)

The A-wave equation is obtained by: replacing B;E, and

C in Eq. (21) with Eqs. (18)–(20); using the vector calculus

identity,10 r�r� A ¼ rðr • AÞ � r2A; and noting that

@rC=@t�r@C=@t ¼ 0. The result is the CED A� wave

equation,8 Eq. (9), without the use of a gauge condition.

The U� wave equation can be obtained by: substituting

E and C from Eqs. (18) and (20) into Eq. (22); and noting

that @r • A=@t�r • @A=@t ¼ 0. The result is the CED

U� wave equation,8 Eq. (8), without the use of a gauge

condition. The usual wave equations for A and U are then

rigorously derivable without a gauge condition. Thus, EED

is gauge-free and predicts the same wave equations for

A;B;E, and U as CED.

Section III described inconsistent interface matching

conditions, which are resolved by this gauge-free theory.

Namely, Eqs. (21) and (22) are alternative forms of the wave

equations for A and U, respectively, as shown above. Thus,

the interface boundary conditions for the A� and U� wave

equations are the appropriate forms: Eqs. (12) and (14).

A wave equation for C can be obtained from the diver-

gence of Eq. (21); application of elð@=@tÞ to Eq. (22); and

summing the two results with10 r •r� B ¼ 0. The result

is18,38

r2C� @2C

@c2t2
¼ �l

@q
@t
þr • J

� �
: (25)

The rigorous derivation of Eq. (25) eliminates the ad hoc
assumptions that were described in Section II to avoid the

overdetermination of Maxwell’s equations.

Equation (25) is an instantaneous equation. But, all

experiments are performed over a finite time, DT, i.e., a time
average. A long-time average gives @q=@tþr • J ¼ 0 on

the right-hand side (RHS) of Eq. (25), in accord with

long-standing experiments that validate classical charge

balance.47 For example, the lower bound on electron lifetime

for charge balance has been carefully measured as

� 6:6� 1028 years48 (decay into two c-rays, each at

mec2=2).

Long-time charge conservation is not inconsistent with

charge nonconservation over short-time scales, DT � Dt, per

the Heisenberg uncertainty relation, DEDt � �h=2. Here, DE
is the charged-quantum-fluctuation energy; and �h is Planck’s

constant divided by 2p. Equation (25) can be interpreted as

charge nonconservation driving C, and vice versa, not unlike

energy fluctuations driving mass fluctuations in quantum

theory and vice versa.18 Thus, Eq. (25) predicts charge con-

servation on long time-scales (consistent with CED), and

exchange of energy between C and quantum fluctuations

for DT � Dt. Confirmation of these quantum charge fluctua-

tions involves tests, consistent with the Heisenberg uncer-

tainty relation. One possible test could use the electron

[DE(electron)¼mec2¼ 0.51MeV] corresponding to a time,

Dt � 6� 10�22 s. Subzeptosecond dynamics have been mea-

sured,49 so a direct measurement of this prediction is feasi-

ble. Moreover, quantum fluctuations can control charge

quantization,50 in accord with Eq. (25).

The homogeneous solution to Eq. (25) is wavelike, with

the lowest-order form in a spherically symmetric geometry,4

C ¼ Co exp ½jðkr � xtÞ�=r. Here, j ¼
ffiffiffiffiffiffiffi
�1
p

; k is the wave

number ð2p=kÞ for a wavelength, k; x ¼ 2pf for a fre-

quency, f ; and r is the spherical radius. Boundary conditions

for Eq. (25) include Cðr !1Þ ! 0, which is trivially

satisfied. Equation (44) predicts that the energy density of

the C� field is ðC2=2lÞ, yielding a constant energy,

4pr2ðC2=2lÞ, through a spherical boundary around a source

in arbitrary media, as required.18 The interface matching

condition for Eq. (25) uses a Gaussian pill box with the end

faces parallel to the interface in regions 1 and 2. Noting that

r2C ¼ r •rC, use of the divergence theorem in the limit of

zero pill-box height yields continuity in the normal compo-

nent (‘n’) of rC=l for long times

rC

l

� �
1n

¼ rC

l

� �
2n

: (26)

The subscripts, 1 and 2, denote medium 1 and medium 2 for

l not necessarily in vacuum.

VI. EED PREDICTION OF SLW

Section III showed that the four-gradient component of

A� is gauged away under CED,20,21 which is inconsistent

with experiments.22–28 Gauge-free EED eliminates this dis-

parity by explicitly including solenoidal (or transverse,

denoted by superscript, “T”) and irrotational (or longitudinal,

denoted by superscript, “L”) parts in Eq. (21). Then, a longi-

tudinal vector potential, AL ¼ ra, yields10
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B ¼ r� AL ¼ r�ra ¼ 0; or AL ¼ ra) B ¼ 0:

(27)

Here, a is a scalar function of space-time. The inverse is

BT ¼ 0 ¼ r� AL ) AL ¼ ra; or

BT ¼ 0) AL ¼ ra:
(28)

Combining Eqs. (27) and (28) gives

AL ¼ ra() BT ¼ 0: (29)

A longitudinal vector potential from Eq. (27) also

implies10

r�r� AL ¼ r�r�ra ¼ 0

¼ rðr • ALÞ � r2AL ) rðr • ALÞ
¼ r2AL ¼ r2ra ¼ rr2a: (30)

Insertion of Eqs. (29) and (30) into the A� wave equation

gives

w2
AL ¼w2ra ¼ rw2a ¼ �lJ) JL ¼ rj; or

AL ¼ ra) JL ¼ rj: (31)

A corollary to Eq. (31), rw2a ¼ �lrj, is

w2a ¼ �lj. The inverse is also true; J ¼ rjþr�GT

allows decomposition of Eq. (21) into transverse and longitu-

dinal parts

r� BT � 1

c2

@ET

@t
¼ lr�GT ) r� BT � lGT

� �
þ @

2AT

@c2t2
¼ 0; (32a)

� 1

c2

@EL

@t
�rC ¼ lrj) @2AL

@c2t2

¼ r � 1

c2

@U
@t
þ Cþ lj

� �
: (32b)

Rearrangement of Eq. (32b) with substitution of C from

Eq. (20) and cancellation of terms, gives the same corollary

to Eq. (31) as cited above. Since time and spatial derivatives

commute, the right-hand portion of Eq. (32b) results in

JL ¼ rj) AL ¼ ra: (33)

Combining Eqs. (31) and (33) yields

AL ¼ ra() JL ¼ rj: (34)

The combination of Eqs. (29) and (34) relates B ¼ 0 and

JL

JL ¼ rj() BT ¼ 0: (35)

The net result of Eqs. (29), (34), and (35) is

AL ¼ ra() BT ¼ 0() JL ¼ rj: (36)

Equation (36) is consistent with the above-cited

tests22–28 and drives the SLW, which is also called an

electro-scalar wave.38,51,52 Clearly, Eq. (36) holds only

where J is nonzero. We prefer the more descriptive phrase,

“scalar-longitudinal wave,” or SLW, which is used through-

out this paper. The explanation for JL driving a SLW is as

follows. The resultant electric field is EL ¼ JL=r ¼ rj=r
for media with a linear conductivity, r. EL and JL for the

SLW are curl-free. Faraday’s law becomes r� EL ¼ � _B ¼
r�rj=r ¼ 0: The overdot denotes a partial-time deriva-

tive. Thus, no eddy currents occur, so the SLW is unimpeded

by the skin effect for propagation through linearly conduc-

tive media. See also Graham et al.53 and Appendix A.

C; EL; and JL are all related by Eq. (32b) with54 r ¼ eoe00x
and e ¼ eoðe0 � je00Þ for a SLW impedance, Z,

Z ¼ jErj
jC=lol0j

¼
ffiffiffiffiffi
lo

eo

r ffiffiffiffi
l0

e0

r
1� 1=ðjkrÞ

1� j tan ðdeÞ
: (37)

Equation (37) assumes spherical waves in linear conduc-

tive media: EL ¼ Er r̂ exp ½jðkr � xtÞ�=r, together with

C ¼ Co exp ½jðkr � xtÞ�=r. The unit vector in the radial

direction is r̂; eo and lo are the free-space permittivity and

permeability, respectively; e0 and l0 are the relative permit-

tivity and permeability (not necessarily vacuum), respec-

tively; tan ðdeÞ ¼ e00=e0. Here, the same definitions are used

for k; r; t; and x as in Section V. From Eq. (20), C has the

same dimensions as B ¼ lH. Consequently, Eq. (37) uses

jEj=ðC=lÞ to obtain the SLW impedance, like the CED

form, Z ¼ jEj=jHj. The C� and E� field energies from

Eq. (44), 4pr2ðeE2=2Þ and 4pr2ðC2=2lÞ, are constant through

a spherical boundary and Cðr !1Þ ¼ jELðr !1Þj ! 0.

Equation (37) predicts Zo ¼
ffiffiffiffiffiffiffiffiffiffiffi
lo=eo

p
, in free-space

(e0 ¼ l0 ¼ 1 and e00 ¼ l00 ¼ 0). The SLW radiation pattern

from a monopole antenna is isotopic, and attenuates as r�2 in

free space; see Appendix B,

POUT ¼
I2r̂

4prð Þ2

ffiffiffi
l
e

r
: (38)

The SLW has not been previously observed, because

transverse electromagnetic (TEM) antennas detect only

waves that produce a circulating current. A TEM transmitter

produces only circulating currents, yielding C ¼ 0 and EL ¼
0 with no SLW power output or reception; see Appendix C.

The wave equations for A; B; E; and U are unchanged

under time reversal. A sign change occurs on both sides of

Eq. (25) for t! �t that also gives time invariance, and indi-

cates the pseudo-scalar nature of C. Time-reversibility of

EED implies that reciprocity holds. Then, a SLW transmitter

can act as a receiver, and vice versa.

VII. EED PREDICTION OF SCALAR WAVE

EED also predicts a scalar wave (that has only a scalar

field, and is distinct from the SLW) under the two condi-

tions: E ¼ 0 and Eq. (36).18 E ¼ 0 corresponds to zero on

the left-hand side (LHS) of Eq. (18). Then, the condition

(AL ¼ ra) from Eq. (36) can be combined with the RHS of
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Eq. (18) giving U ¼ � _a. Equation (20) for the scalar field

can subsequently be rewritten by the replacements, U ¼ � _a
and AL ¼ ra :

C ¼ r • Aþ 1

c2

@U
@t
¼ r2a� 1

c2

@2a
@t
¼w2a: (39)

Substitution of Eq. (39) into Eq. (25) yields18

w2w2a ¼w4a ¼ �l
@q
@t
þr • J

� �
: (40)

Here, w2
is the wave operator as defined in Eq. (23). Use of

E ¼ 0 in Eq. (22) yields

@C

@t
¼ q

e
) q ¼ e _C ¼ ew2 _a: (41)

The last form in Eq. (41) comes from the partial-time

derivative of Eq. (39). Equation (42) arises from Eq. (40) by

replacing @q=@t with the partial-time derivative of Eq. (41),

use of JL ¼ rj from Eq. (36) to evaluate r • J, and rear-

rangement of the terms, resulting in the left-hand form

w4aþ 1

c2
w2€a þ lr2j

¼w2 r2a� €a
c2
þ €a

c2

� �
þ lr2j

¼ r2 w2aþ lj
� �

¼ 0: (42)

The second line of Eq. (42) arises from expansion of

the wave operator. The third line of Eq. (42) results from

cancellation of the positive and negative €a-terms along with

interchange of the wave- and Laplacian (r2) operators,

which commute. One solution to Eq. (42) involves setting

the term inside the parentheses to zero, which is another

form for the longitudinal component of the A� wave equa-

tion [Eq. (9)] with AL ¼ ra and JL ¼ rj: This solution

arises, because the gradient and Laplacian operators com-

mute for AL, per Eq. (30). A second solution to Eq. (42)

involves setting the entire left-hand form to zero, which

results in the AL� wave equation being set equal to a har-

monic function55 [HðrÞejxt]

w2a r; tð Þ ¼ HðrÞejwt � lj r; tð Þ: (420Þ

Here, the space and time dependences are shown explic-

itly. r2HðrÞ ¼ 0 is typically solved by separation of

variables.56 For example, in Cartesian coordinates, HðrÞ
involves the sum HðrÞ ¼

P
XnðxÞYwðyÞZfðzÞ, where n2 þ

w2 þ f2 ¼ 0 and [XnðxÞ; YwðyÞ; ZfðzÞ] are an appropriate set of

scalar functions of (x,y,z), respectively. The time-dependent

term (ejxt) that is associated with HðrÞ is unaffected by the

Laplacian operator. Nonhomogeneous solutions to Eq. (420)
are beyond the scope of the present work, being dependent on

the specific boundary conditions, geometry, and form for

jðr; tÞ. The lowest-order, homogeneous solution to Eq. (420) is

a ¼ ao

r
ejðxt�krÞ: (43)

Substitution of Eq. (43) into Eq. (39) gives the same 1=r
dependence for C in free space, as for the SLW. Revised

energy balance, Eq. (44), shows that the scalar-wave energy

is C2=2l � 1=r2. Thus, the total scalar-wave energy,

4pr2ðC2=2lÞ, is constant through a spherical boundary

around a source and Cðr !1Þ ! 0, as expected. Revised

momentum balance, Eq. (45), shows that the scalar wave has

a pressure of rC2=2l, but no momentum density.

VIII. REVISED BALANCE EQUATIONS

EED predicts a revised energy balance,18,38 Eq. (44),

from the sum of: ðC=lÞ times Eq. (22); ðB=lÞ • applied to

Faraday’s law; and application of �ðE=lÞ • applied to

Eq. (21)

@

@t

B2

2l
þ C2

2l
þ eE2

 !
þr •

E� B

l
þ CE

l

� �

þ J • E ¼ qC

el
: (44)

Equation (44) has new energy density terms: scalar field

energy ðC2=2lÞ, SLW energy ðCE=lÞ, and a power source

ðqC=elÞ.
EED predicts revised momentum balance,18,38 Eq. (45),

as the sum of: ðB=lÞr • B ¼ 0; the cross product of ðeEÞ
with Faraday’s law; Eq. (21) �ð�B=lÞ; ðC=lÞ� Eq. (21);

and ð�eEÞ� Eq. (22). Equation (45) has new density terms:

SLW momentum flux ðCE=lÞ, TEM-SLW mixed mode flux

½ðr � BCÞ=l�, a force ðJCÞ parallel to the current density,

and scalar-field pressure ðrC2=2lÞ. The last term in Eq. (45)

is the divergence of the CED Maxwell stress tensor4

el
@

@t

E� B

l
� CE

l

� �
þ qEþ J� Bþr� BC

l

¼ JCþrC2

2l
þr • T

$
: (45)

Equation (44) predicts a power gain ðþCE=lÞ with

momentum loss ð�CE=lÞ in Eq. (45), and vice versa. This

sign difference means that a SLW emission (power loss) drives

a momentum gain in a massive object that emits the SLW.

IX. PRELIMINARY SLW EXPERIMENTS

The present work eliminates sources of error in previous

tests,51,52 which are discussed in Appendix D. High fre-

quency (�8 GHz) experiments facilitate an indoor, con-

trolled test environment. Figure 1 shows the test layout. The

transmitter and receiver are identical (inverted triangles in

the lower left of Fig. 1), since time-reversal symmetry

allows the transmitter to act as a receiver, as discussed in

Section VI. The directional couplers act as 45-dB isolators.

Grounding to a single point avoids current loops. Modern

digital instrumentation allows accurate measurement of sig-

nal amplitudes and distances for comparison of test results to

EED predictions.

Figure 2 shows the linear, monopolar, SLW antenna

with the coaxial center conductor as the radiator. The outer

Physics Essays 32, 1 (2019) 117



coaxial conductor is electrically connected to the top of the

skirt balun.57,58 The skirt balun length ðk=4Þ causes a phase

shift in the current flow along the guided path from the bot-

tom (inside surface) of the skirt balun conductor (0	) to the

top (inside surface) of the skirt balun (90	) and back down

the outer surface of the coax outer conductor to the end of

the skirt balun (180	). The 180	-phase shift attenuates the

return current along the outside of the outer coaxial conduc-

tor to form a monopole antenna, thus eliminating the image

charge and image current of previous tests.51,52 The resultant

far-field contours of constant jEj from an HFSS electrody-

namic simulation are essentially spherical, as expected for a

monopolar antenna (top of Fig. 2). The RG-405/U coaxial

cabling uses a solid, outer conductor to minimize stray fields;

the presence or absence of an outer insulating jacket makes

no difference in the results of the electrodynamic simulation.

(A 3k-diameter ground-plane disk at the feed-point gives

essentially the same jEj contours, thus confirming the linear

monopolar, counter-poise design.)

The return-current attenuation (23 dB) of the previous

paragraph is quantified in Fig. 3, as a sharp null at 7.94 GHz

(shown in red online). Return-current attenuation allows the

monopole antenna to draw charge from the ground plane

(top of the skirt balun) and also creates an impedance match

between the antenna-balun (49.76–j0.24 X) and the source

(50 X). Thus, the skirt balun reduces the return current along

the outside of the outer coax conductor, so that essentially all

of the electrical current goes into charging and discharging

the antenna (an irrotational current) to drive the SLW, as pre-

dicted in Eq. (36). The test result for a single skirt balun

(shown in green online in Fig. 3) shows the same trend as the

HFSS simulation with a minimum of �23 dB at 8.00 GHz;

the test result for a double balun was �42 dB (not shown).

The difference in null depth arises from inaccuracies in the

antenna fabrication. Variation in the return loss with fre-

quency arises from the tuned balun geometry.

One experiment tested two critical EED predictions.

Namely, the SLW is unconstrained by the skin effect, and

the free-space attenuation of the SLW has a 1=r2� depen-

dence. The test measured signal attenuation (dB) versus dis-

tance (r) with the transmitting-antenna location fixed, and

the receiving antenna moved in a straight line horizontally

via a linear positioner with 1-mm accuracy. The source

frequency was 8.00 GHz with a free-space wavelength,

FIG. 1. (Color online) Test layout, with numbered items in the diagram corresponding to the tabular description above. This figure does not show Items 3,

and 6–8, which are discussed in the text.
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k ¼ 3:75 cm. Figure 4 shows the results for two, facing, col-

linear SLW-antennas inside an anechoic, Faraday chamber

(90 dB isolation).

In addition, each antenna was inside its own separate

Faraday enclosure. Each antenna enclosure consisted of a

copper pipe (Nibco copper coupling without C x C – Wrot,

601) and two hemispherical end caps (outer diameter¼
15.85 mm, inner diameter¼ 14.34 mm). The pipe length was

28.89 mm with a wall thickness of 1.02 mm. The hemispheri-

cal end caps (Nibco Cap C – Wrot, 617) had an outer diame-

ter of 17.80 mm, an inner diameter of 15.80 mm, and a wall

thickness of 1.05 mm. One end cap had a central hole slightly

larger than the outer diameter of the coaxial outer conductor.

This end cap was carefully soldered to the coax outer con-

ductor to create a strong structural bond and a tight, 360	

electrical seal between the Faraday enclosure and the coax

outer conductor. Likewise, the hemispherical caps were sol-

dered to each end of the copper pipe to create a strong struc-

tural bond and a tight, 360	 electrical seal. Figure 4 shows

the SLW signal attenuation through both antenna enclosures.

The straight-line, least-squares-fit, log-log slopes are

�2.6301 and �2.2273 for the top and bottom plots, respec-

tively. The measurements are presently too noisy to distin-

guish these slopes from �2. The interior of the Faraday

enclosures for each antenna did not have any RF attenuating

foam, allowing resonance-cavity effects that are not included

FIG. 2. (Color online) Cross-sectional view of constant |E| contours for the SLW antenna. Heavy lines (shown in purple online) are conductors for the linear

monopole antenna (top label), skirt balun (middle label), and outer conductor of the coaxial cable (bottom label).
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in the present theory. SLW attenuation in conductive media

is the subject of future work. The combined solid-copper

thickness (2� 1.02 mm) is 2914 skin depths in the result of

Fig. 4, which should produce a classical attenuation of

�10�1265 in TEM waves. The test measurement yielded an

attenuation between �115 dB at r¼ 2 cm separation and

�137 dB at r ¼ 30 cm. Extrapolating the straight-line fit to a

separation of 2 mm (where the enclosed antennas are barely

separated) gives �79 dB and �86 dB, for an attenuation of

�10�4. The difference between the measured value and the

FIG. 3. (Color online) Attenuation of the return current as a function of frequency, showing a minimum in the HFSS-model results with a sharp null to �49 dB

at 7.94 GHz (shown in red online) in comparison to the measured balun effectiveness with a shallow null to �23 dB at 8.00 GHz (shown in green online).

FIG. 4. (Color online) SLW attenuation (S21 in the top plot and S12 in the bottom plot) in dB versus the transmitter-to-receiver distance in r (meters).
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classical prediction is >1261 orders of magnitude. This dis-

parity far exceeds the criterion for a scientific discovery (five

standard deviations or a probability of <3� 10�7). These

results show that the SLW is unconstrained by the skin effect

with 1=r2� attenuation in free-space. These results are con-

sistent with EED and cannot be explained by CED.

The extraordinary result in the previous paragraphs

requires substantial discussion. We emphasize that the above

results are from preliminary measurements and may have

confounding factors that have yet to be identified. One issue

may be TEM signals being picked up by the coaxial cables,

either inside or outside the Faraday cage. This issue was

addressed by the use of RG405/U cables with a solid copper

outer conductor everywhere, which eliminated TEM interfer-

ence. In this light, we did not use a TEM receiving antenna

inside the Faraday cage to confirm the absence of such a sig-

nal. A second issue is that the SLW is unconstrained by the

skin effect (Appendix A) and can therefore penetrate the

solid copper outer conductor of the RG405/U cabling, which

moved with the motion of the linear and rotational position-

ers. This cable motion probably accounts for the large vari-

ability in the results of Figs. 4 and 5. A third issue is the

distance between the transmitter and receiver in comparison

to the wavelength, Namely, a longitudinal E-field component

occurs in the near-field under classical (Maxwell) electrody-

namics at a distance of �3k for the largest dimension of the

antenna small in comparison to the wavelength.59 However,

a significant signal was received 30 cm (8 wavelengths) from

the transmitter, which is well beyond the near-field. More-

over, detection of this far-field signal required the SLW to

penetrate a 1-mm thick Faraday enclosure that surrounded

the transmitter, as well as a 1-mm thick Faraday enclosure

around the receiver. Wave penetration of the two 1-mm thick

Faraday enclosures (2-mm total) demonstrates the low-loss

nature of the SLW in conductive media. A more accurate

and compelling result clearly requires a much better experi-

mental design, which is the subject of future work.

Equation (38) predicts isotropic transmission from the

SLW monopole antenna. Figure 5 shows the variation

between a bare, single-balun transmitter and a Faraday-

enclosed, single-balun receiver with a fixed separation of

r ¼ 0:75 m. Both antenna axes were in the horizontal plane

inside the anechoic Faraday chamber. The receiving antenna

was rotated 360	 in the horizontal plane (polar angle, hÞ by a

rotational positioner in 1	 increments. The variability over

the entire angular range is 61 dB, showing isotropy within

the measurement accuracy from the linear, monopole

antenna, in accord with the EED prediction.

X. DISCUSSION

EED allows spherical symmetry, Eq. (38), in the electrical

current density (J) and longitudinal fields, which CED for-

bids.60 Table I shows testable EED predictions. Starred items

in Table I are consistent with tests in Section IX. The star for

FIG. 5. (Color online) SLW power variation (dB) versus polar angle (h)

for a bare SLW antenna (transmitter) and a Faraday-boxed SLW antenna

(receiver). Two repetitions of the test (green and blue) show reproducibility

within 61 dB.

TABLE I. Summary of testable EED predictions.

Item Brief description of testable prediction Reference

1 The interface matching condition for qA is… Equation (12)

2 The interface matching condition for JA is… Equation (14)

3 The SLW has a scalar field, C ¼ r•Aþ el@U=@t. Equation (20)

4 The scalar field is also charge-fluctuation driven. Equation (25)

5 The interface matching condition for C is… Equation (26)

6 The SLW has drivers: AL ¼ ra() BT ¼ 0() JL ¼ rj: Equation (36)*

7 The SLW has a longitudinal E� field. Section VI

8 The SLW is unconstrained by the skin effect. Section VI*

9 C is a pseudo-scalar field. Section VI

10 The SLW has a power comparable to the TEM wave. Equation (37)*

11 The SLW free-space attenuation goes like 1=r2. Equation (38)*

12 The SLW monopole radiation is isotropic. Equation (38)*

13 The scalar wave arises from U ¼ � _a and… Equation (42)

14 The scalar-field energy density is C2=2l. Equation (44)

15 The SLW power density vector is CE=l. Equation (44)

16 Energy balance has a new source, qC=el. Equation (44)

17 The SLW momentum density is �CE=l. Equation (45)

18 Momentum balance has a mixed-mode term,r� BC=l. Equation (45)

19 Momentum balance also has source term, JC. Equation (45)

20 The scalar-field pressure density is rC2=2l. Equation (45)
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Item 6 occurs, because the linear, monopolar SLW antenna

with a balun imposes an irrotational current, as discussed in

Section IX. The star for Item 10 arises, because the SLW atten-

uation is measured with standard instrumentation and has a

free-space impedance that is identical to TEM waves.

Haag’s theorem61 states that two Hilbert solutions may

be unitarily inequivalent within quantum field theory (QFT).

The “proper” representation must then be chosen from an

infinite set of inequivalent forms. Seidewitz62 showed that

Haag’s theorem does not apply to Eq. (16). Equations

(18)–(22) are a necessary and sufficient condition for

Eq. (16) with c ¼ 1 and m ¼ 0, resolving the problem of

inequivalent unitary QFT forms. We note that the relativistic

field equations arising from the Stueckelberg Lagrangian32

are taught in advanced physics texts, e.g., Ref. 63.

XI. CONCLUSIONS

The conclusions of this work follow. Section II shows

that CED is overdetermined. Section III identifies inconsis-

tencies in CED that arise from this overdetermination: incor-

rect interface matching conditions and gauging away of the

four-gradient in A� . Section IV shows the provably unique

basis for EED,7 which has a new term ðrCÞ in Ampere’s

law and a new term ð@C=@tÞ in Gauss’ law. Section V rigor-

ously derives the CED wave equations from EED without a

gauge condition. EED also eliminates the inconsistencies

that are identified in Section III, and predicts a revised form

for charge conservation without any ad hoc assumption(s).

In Section VI, EED further predicts a free-space, SLW.

Equation (36) shows that the SLW arises from an irrotational

current, a longitudinal vector potential, or antennas that have

a null magnetic field. Section VII derives the conditions for a

scalar wave under EED. Section VIII shows the EED deriva-

tion of revised energy and momentum balance. Section IX

presents preliminary experimental results for the SLW (five

of the testable predictions in Table I) that are consistent with

EED and cannot be explained by CED. Specifically, the tests

show that the SLW: (a) is unconstrained by the skin effect

via propagation through Faraday enclosures with a disparity

of 1261 orders of magnitude between CED and EED; (b) can

be transmitted and received by a monopolar antenna (not to

be confused with magnetic monopoles) with an isotropic

radiation pattern; and (c) has a free-space attenuation consis-

tent with 1=r2. The disparity under item (a) far exceeds the

criterion for a scientific discovery {five standard deviations

[probability � 3� 10�7(�7.5 orders of magnitude)]. These

measurements are in accord with the EED theory developed

in Sections V and VI. Clearly, much additional work is

needed to strengthen and replicate these measurements.
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APPENDIX A: SLW IN CONDUCTIVE MEDIA

A necessary and sufficient condition for the SLW,

Eq. (36), is B ¼ 0, which gives w2
B ¼ �lr� J¼ 0. The

curl of the (RHS) of this last equation is10 r�r� J ¼
rðr • JÞ � r2J ¼ 0: The resultant form is

rðr • JÞ ¼ r2J: (A1)

The gradient of the classical charge-conservation equa-

tion with substitution from Eq. (A1) yields

@rq
@t
¼ �r r • JÞ ¼ �r2J:

�
(A2)

The partial time-derivative of the E-wave equation, Eq.

(24), with substitution from Eq. (A2) is

w2 _E ¼ l
@2J

@t2
þ 1

e
@rq
@t
¼ l

@2J

@t2
�r

2J

e
¼w2

J

e
: (A3)

Equation (A3) can be rewritten, using Ohm’s law,

J ¼ rE; for linearly conductive media

w2 _E þ J

e

� �
¼w2 _E þ rE

e

� �
: (A4)

One solution to Eq. (A4) sets the terms inside the paren-

theses to zero, as a transient solution4 that typically decays

in �10�19s

E ¼ Eoe�et=r: (A5)

Eo in Eq. (A5) is the initial value of E. A second solution to

Eq. (A4) uses the nontransient, separable form for E after the

transient decay

E ¼ EoðrÞe�jxt: (A6)

Here, r is the position vector. Substitution of Eq. (A6) into

Eq. (A4) with elimination of common terms gives

w2
E ¼ 0: (A7)

The lack of a source term on the RHS of Eq. (A7) means

that the SLW propagates without loss in isotropic, homoge-

neous conductive media (r ¼ constant). That is, the SLW is

unconstrained by the skin effect. This prediction can be veri-

fied by substitution of the spherical wave forms for E and C
into the energy balance equation, Eq. (44), with B ¼ 0 and

the ratio of jErj=jC=lj from Eq. (37); the same result arises

for plane waves.
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APPENDIX B: SLW TRANSMISSION POWER

The SLW power output (POUT) is obtained via the

method in Chapter 9 of Jackson.4 A linear, thin-wire

antenna is assumed on the z-axis over the interval,

0 � z � L � k
 r. J and q are initially written in Cartesian

coordinates

JL ¼ ẑIdðxÞdðyÞe�jxtðcos kz� cos kLÞ
ð1� cos kLÞ : (B1)

q ¼ jIdðxÞdðyÞe�jxt sin kz

cð1� cos kLÞ : (B2)

The irrotational current density ðJLÞ is maximal at the

feed point, z ¼ 0 (where the center conductor exits the coax-

ial cable), and zero at the end of the antenna ðz ¼ LÞ. The

Dirac delta function is denoted by dð…Þ; the current is I.
The charge density ðqÞ is determined from J by classical

charge balance. U and A are obtained by Green’s-function

solutions to Eqs. (8) and (9)

U ¼ Iejðkr�xtÞ

4pcekrð1� cos kLÞ

� e�jkL cos hð�j cos kLþ cos h sin kLÞ þ j

sin2h

� �
;

(B3a)

A ¼ lIẑejðkr�xtÞ

4pkrð1� cos kLÞ

� e�jkL cos hðsin kL� j cos h cos kLÞ þ j cos h

sin2h

�

� j cos kL

cos h
e�jkL cos h � 1ð Þ

�
: (B3b)

Equations (B3a) and (B3b) are now written in cylindri-

cal coordinates. As before, e and l are the permittivity and

permeability of the propagation medium, respectively, (not

necessarily vacuum). Equations (B3a) and (B3b) assume

kL � 1 (small antenna) and kr � 1 (far field), allowing

terms on the order of ðkrÞ�1
and higher to be neglected

in comparison to unity. C and E then are obtained from

Eqs. (18) and (20) in spherical coordinates with ẑ ¼ r̂ cos h

�ĥ sin h :

C ¼ r • Aþ 1

c2

@U
@t
¼ lIejðkr�xtÞ

4pr
; (B4a)

E ¼ �rU� @A

@t
¼

clIejðkr�xtÞ r̂ � ĥf ðhÞ
h i

4pr
: (B4b)

Equation (B4b) has f ðhÞ; which is irrelevant to this deri-

vation, because the radiated power flows only in the radially

outward (þr̂) direction). POUT for the SLW is determined

from the time-averaged, radial component, <C�E=l > from

Eq. (44)

POUT ¼
I2r̂

4prð Þ2

ffiffiffi
l
e

r
: (B5)

APPENDIX C: SLW FROM TEM ANTENNA

The SLW power output (POUT) is obtained by the proce-

dure in Chapter 9 of Jackson.4 A linear, thin-wire, dipolar

antenna is assumed along the z-axis over the interval,

�L � z � L � k
 r. The current (J) and charge densities

(q) are the same as in Appendix B; the notation is also identi-

cal to Appendix B. U and A are obtained from the Green’s-

function solutions to Eqs. (8) and (9)

A¼ lIẑejðkr�xtÞ

2pkr

� sinkLcos kLcoshð Þcosh� coskL sin kLcoshð Þ
ð1� coskLÞsin2hcosh

" #
;

(C1a)

U¼ Iejðkr�xtÞ

2pexr

� sinkLcos kLcoshð Þcosh� coskL sin kLcoshð Þ
ð1� coskLÞ sin2h

" #
:

(C1b)

Equations (C1a) and (C1b) are written in cylindrical

coordinates. As in Appendix B, e and l are the permittivity

and permeability of the propagation medium, respectively,

(not necessarily vacuum). Equations (C1) assume kL � 1

(small antenna) and kr � 1 (far field), allowing terms on the

order of ðkrÞ�1
and higher to be neglected in comparison to

unity. C is then obtained from Eqs. (C1) with ẑ ¼ r̂ cos h
�ĥ sin h, using spherical coordinates on the RHS

C ¼ r • Aþ 1

c2

@U
@t
¼ 1

r2

@ r2Arð Þ
@r

þ 1

c2

@U
@t
: (C2)

The resultant expression in the far-field for C becomes

C¼ð1�1ÞjlIejðkr�xtÞ

2pr

� sinkLcos kLcoshð Þcosh� coskLsin kLcoshð Þ
ð1� coskLÞsin2h

" #
¼0:

(C3)

Moreover, the radial component of E in the far field is

E¼ð1�1ÞjIr̂ejðkr�xtÞ

2pr

ffiffiffi
l
e

r

� sinkLcos kLcoshð Þcosh� coskLsin kLcoshð Þ
ð1� coskLÞsin2h

" #
¼0:

(C4)

Consequently, POUT(SLW)¼ <C�E=l > is zero. This

result explains the nondetection of the SLW by TEM anten-

nas, which can detect waves that generate only a circulating
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current (no gradient-driven current). Again using ẑ ¼
r̂ cos h� ĥ sin h for TEM waves, the theta-component of E

from Eq. (18) is

E ¼ �jIĥejðkr�xtÞ

2pr

ffiffiffi
l
e

r

� sin kL cos kL coshð Þcosh� cos kL sin kL cos hð Þ
ð1� cos kLÞ sinh cosh

" #
:

(C5)

The magnetic field from the TEM antenna from

Eq. (19) is

B¼�jlIûejðkr�xtÞ

2pr

� sin kL cos kL coshð Þcosh� cos kL sin kL coshð Þ
ð1� cos kLÞ sinhcosh

" #
:

(C6)

POUT (TEM)¼ <E� � B=l > for the TEM wave then is

POUT¼
I2r̂

2prð Þ2

� sinkLcos kLcoshð Þcosh�coskLsin kLcoshð Þ
ð1�coskLÞsinhcosh

" #2

:

(C7)

Equation (C7) is zero in the limits of h! 0; p
via L’Hospital’s rule. POUT is maximal for h! p=2 via

L’Hospital’s rule

POUT ¼
I2r̂

2prð Þ2
kL cos kLð Þ � sin kLð Þ
ð1� cos kLÞ

" #2

: (C8)

Equations (C7) and (C8) are consistent with Jackson’s

Eq. (9.28), which assumed a constant current density, rather

than a more realistic sinusoidal current density,4 as done

here.

APPENDIX D: DISCUSSION OF PREVIOUS SLW TESTS

A test by Monstein and Wesley51 used a 6-cm diameter,

center-fed aluminum spherical transmitter and receiver at

433.59 MHz (k ¼ 69:2 cm). A three-by-three array of half-

wavelength, linear, electric-dipole antennas was placed

between the transmitter and receiver. The signal was strongly

attenuated for the dipole-array parallel to the transmitter-

receiver direction. No attenuation occurred for an array ori-

entation perpendicular to the propagation direction, showing

that the E� wave polarization was longitudinal. The results

agreed with image-charge theory for separation distances

less than 100 m (144 wavelengths), including two interfer-

ence minima. The outdoor tests were performed near the

bank of the Rhein River in Switzerland. The outer conductor

of the coaxial cable was grounded, inducing unquantified

electrical ground currents. The transmitter-receiver distance

was measured via GPS (accuracy of 65m). Bray and

Britton64 note that the solution for U is inconsistent with

CED, which Monstein and Wesley65 accept as a failure in

the classical Maxwell theory. These tests were poorly con-

trolled, and not reproducible.

Butterworth et al.52 unsuccessfully attempted replication

of the tests by Monstein and Wesley51 [TMW], as shown in

Table II. The test-to-theory match in Table II refers to the

image-charge theory in the previous paragraph. Specifically,

both tests placed the antenna at a height ðþHÞ above a large,

conductive ground plane. An image-charge model4 has a

negative-charge source at the same distance below the

ground plane ð�HÞ. However, an image-current flows in the

same (opposite) direction as the real current for vertically-

(horizontally-) oriented dipole antennas.46 TMW and the

Butterworth52 omitted the image current, leading to poor

agreement between the test results and the models.66 The last

line of Table II refers to measurements of the E� wave

polarization, also as discussed above.

Table III summarizes the inadequacies in these tests and

gives suggestions for improvements for the present work.

Both experiments have noise that confounds the results. The

coaxial feed-line into the antenna creates an asymmetry in

the spherical geometry. Lacking a balun, capacitive coupling

(displacement current) between the antenna and the coaxial

cable’s outer conductor induces a return current on the out-

side of the outer conductor of the coaxial cable, creating

TEM radiation (items c-d in Table III). Impedance matching

TABLE II. Comparison of tests by Monstein and Wesley51 and Butterworth et al.52

Feature in Monstein and Wesley (2002) Feature in Butterworth et al. (2013)

Aluminum-sphere diameter, D ¼ 6 cm Aluminum-sphere diameter, D ¼ 7:62 cm

Antennas on 4.3 m and 4.7 m high stanchions Antennas on 2 m high stanchions

f ¼ 433:59 MHz, k ¼ 69:2 cm f ¼ 446 MHz, k ¼ 67:3 cm

Signal on and off for calibration purposes No mention of on/off signal for calibration

Outdoor, north-south test on Rhein River bank Indoor-hallway/outdoor tests (east-west)

Use of ball antennas only Ball and half-wave-dipole antennas

No mapping of ball-antenna radiation pattern Radiation pattern vs angle from ball apex

Transmitter-to-receiver distance, r ¼ 13� 700 m Transmitter-to-receiver distance, r ¼ 2� 90 m

Test-to-theory match: minima at r ¼ 24; 40 m Test-to-theory match: minimum at r � 30 m

Longitudinal E� wave from dipolar polarizer E� wave polarization shift by p=2 radians
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between the source and antenna and signal-to-noise ratio are

unaddressed by Monstein and Wesley51 who used a custom-

made transmitter and receiver, instead of a standard signal

source and spectrum analyzer. Without a phase-locked signal

from a network analyzer, external/stray signals can confound

the measurements. The Fresnel zone of the polarizer-

analyzer (from diffraction by the circular aperture) is not

addressed; the Fresnel radius ðFÞ is � 11 m for the TMW. A

small-diameter polarizer-analyzer ðk=F
 1Þ does not pro-

vide 99% attenuation of the TMW signal in their Fig. 3,

unless the polarizer-analyzer is very close to either the trans-

mitter or receiver; that location was unspecified. A definitive

test requires better control of the experimental conditions.

Thus, these tests do not provide clear SLW evidence.

1J. C. Maxwell, Phil. Trans. R. Soc. London 155, 459 (1865).
2O. Heaviside, Electromagnetic Theory, Vol. 1 (Cosimo Classics,

New York, 2007), Chap. 3, pp. 132ff.
3L. Lorenz, Philos. Mag. (Ser. 4) 34, 287 (1867).
4J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
5J. D. Jackson and L. B. Okun, Rev. Mod. Phys. 73, 663 (2001).
6J. D. Jackson, Am. J. Phys. 70, 917 (2002).
7D. A. Woodside, Am. J. Phys. 77, 438 (2009).
8D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall of India,

New Delhi, 2007).
9J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941),

p. 5.
10A. E. Danese, Advanced Calculus, Vol. I (Allyn & Bacon Inc., Boston,

MA, 1965).
11C. Liu, “Relationship between fields and sources,” e-print arXiv:1002.0892v10.
12M. Arminjon, Open Phys. 16, 488 (2018).
13B. Jiang, J. Wu, and L. A. Povinelli, J. Comp. Phys. 125, 104 (1996).
14C.-D. Munz, R. Schneider, E. Sonnendr€ucker, and U. Voss, C. R. Acad.

Sci. Paris I 328, 431 (1999).
15C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendr€ucker, and U. Voß,

J. Comp. Phys. 161, 484 (2000).
16M. Pfeiffer, C.-D. Munz, and S. Fasoulas, J. Comp. Phys. 294, 547

(2015).
17E. M. Sousa and U. Shumlak, J. Comp. Phys. 326, 56 (2016).
18L. M. Hively and G. C. Giakos, Int. J. Signal Imaging Syst. Eng. 5, 3

(2012).
19P. Martin-L€of, “Mathematics of infinity,” in COLOG-88 (Lecture Notes in

Computer Science), edited by P. Martin-L€of and G. Mints, 417 (Springer,

Berlin, 1988).
20C. Duval, P. A. Horv�athy, and L. Palla, Phys. Rev. D 50, 6658 (1994).
21P. M. Zhang, G. W. Gibbons, and P. A. Horv�athy, Phys. Rev. D 85,

045031 (2012).
22G. Rousseaux, R. Kofman, and O. Minazzoli, Eur. Phys. J. D 49, 249

(2008).
23M. Daibo, S. Oshima, Y. Sasaki, and K. Sugiyama, IEEE Trans.

Magn. 51, 1000604 (2015); IEEE Trans. Appl. Supercond. 26,

0500904 (2016).

24R. K. Varma, J. Plasma Phys. 79, 1025 (2013).
25P. K. Shukla, Phys. Scr. 86, 048201 (2012).
26C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, Nature

(London) 455, 1089 (2008).
27I. Szab�o, M. Soddemann, L. Leanza, M. Zoratti, and E. Gulbins, Cell

Death Differ. 18, 427 (2011).
28R. G. de Peralta Menendez and S. G. Andino, Comput. Math. Meth. Med.

2015, 801037.
29K. Popper, Realism and the Aim of Science: From the Postscript to the

Logic of Scientific Discovery (Routledge, London, 1985).
30D. A. Woodside, J. Math. Phys. 40, 4911 (1999).
31D. A. Woodside, J. Math. Phys. 41, 4622 (2000).
32F. C. G. Stueckelberg, Helv. Phys. Acta. 11, 225 (1938); Helv. Phys. Acta.

11, 299 (1938).
33L.-X. Liu and C.-G. Shao, Chin. Phys. Lett. 29, 111401 (2012).
34Y. Aharonov and D. Bohm, Phys. Rev. 130, 1625 (1963).
35J. B. Jim�enez and A. L. Maroto, Phys. Rev. D 83, 023514 (2011).
36V. A. Fock and C. Podolsky, On Quantization of Electro-Magnetic Waves

and Interaction of Charges in Dirac Theory (1932), reprinted in V. A.

Fock, Selected Work—Quantum Mechanics and Quantum Field Theory,

edited by L. D. Faddeev, L. A. Khalfin, and I. V. Komarov (Chapman &

Hall/CRC, New York, 2004), pp. 225.
37T. Ohmura, Prog. Theor. Phys. 16, 684 (1956).
38K. J. van Vlaenderen and A. Waser, Hadronic J. 24, 609 (2001).
39A. I. Arbab and Z. A. Satti,, Prog. Phys. 5, 8 (2009).
40E. I. Nefyodov and S. M. Smolskiy, Understanding of Electrodynamics,

Radio Wave Propagation and Antennas (Scientific Research, Wuhan,

China, 2012), Chap. 1.
41A. K. Tomilin, J. Electromagn. Anal. Appl. 5, 347 (2013).
42A. Gersten and A. Moalem, J. Phys. Conf. Ser. 615, 012011 (2015).
43L. A. Alexeyeva, J. Mod. Phys. 7, 435 (2016).
44G. Modanese, Results Phys. 7, 480 (2017); Mod. Phys. Lett. B 31,

1750052 (2017); Phys. B 524, 81 (2017); Mathematics 6, 155 (2018);

Tunneling, Unified Field Mechanics II: Formulations and Empirical Tests
(World Scientific, Hackensack, NJ, 2018), pp. 268ff.

45M. Planck, Sitz. d. K€oniglich Preußischen Akad. Wiss. Berlin 5, 440

(1899).
46P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves, 2nd ed.

(W.H. Freeman and Co., San Francisco, CA, 1970).
47L. B. Okun, Sov. Phys. Usp. 32, 543 (1989).
48M. Agostini, S. Appel, G. Bellini, J. Benziger, D. Bick, G. Bonfini, D.

Bravo, B. Caccianiga, F. Calaprice, A. Caminata, P. Cavalcante, A.

Chepurnov, D. D’Angelo, S. Davini, A. Derbin, L. D. Noto, I. Drachnev,

A. Empl, A. Etenko, K. Fomenko, D. Franco, F. Gabriele, C. Galbiati, C.

Ghiano, M. Giammarchi, M. Goeger-Neff, A. Goretti, M. Gromov, C.

Hagner, E. Hungerford, A. Ianni, A. Ianni, K. Jedrzejczak, M. Kaiser, V.

Kobychev, D. Korablev, G. Korga, D. Kryn, M. Laubenstein, B. Lehnert,

E. Litvinovich, F. Lombardi, P. Lombardi, L. Ludhova, G. Lukyanchenko,

I. Machulin, S. Manecki, W. Maneschg, S. Marcocci, E. Meroni, M.

Meyer, L. Miramonti, M. Misiaszek, M. Montuschi, P. Mosteiro, V.

Muratova, B. Neumair, L. Oberauer, M. Obolensky, F. Ortica, K. Otis, M.

Pallavicini, L. Papp, L. Perasso, A. Pocar, G. Ranucci, A. Razeto, A. Re,

A. Romani, R. Roncin, N. Rossi, S. Schönert, D. Semenov, H. Simgen, M.

Skorokhvatov, O. Smirnov, A. Sotnikov, S. Sukhotin, Y. Suvorov, R. Tar-

taglia, G. Testera, J. Thurn, M. Toropova, E. Unzhakov, A. Vishneva,

R. B. Vogelaar, F. von Feilitzsch, H. Wang, S. Weinz, J. Winter, M. Woj-

cik, M. Wurm, Z. Yokley, O. Zaimidoroga, S. Zavatarelli, K. Zuber, and

G. Zuzel, Phys. Rev. Lett. 115, 231802 (2015).

TABLE III. Inadequacies in previous experiments and suggested improvements.

Inadequacy in previous experiments Ways to avoid inadequacies in present work

(a) Frequency too low (433-446 MHz) Frequency of �8 GHz for lab test ðk � 3:75 cmÞ
(b) Poorly controlled, test environment Use of well-controlled, laboratory environment

(c) Image charge due to conductive grounding Elimination of return charge by balun

(d) Image current from conductive grounding Elimination of return current by balun

(e) Imprecise measurements Use of modern digital instrumentation

(f) Longitudinal polarization from dipole array Measurement with modern instrumentation

(g) Transmitter-receiver distance error of 65m Positional measurements with sub-mm error

(h) No statistical analysis of test-versus-theory Statistical comparison: experiment with theory

Physics Essays 32, 1 (2019) 125

http://dx.doi.org/http://www.bem.fi/library/1865-001.pdf
http://dx.doi.org/10.1080/14786446708639882
http://dx.doi.org/10.1103/RevModPhys.73.663
http://dx.doi.org/10.1119/1.1491265
http://dx.doi.org/10.1119/1.3076300
http://dx.doi.org/10.3969/j.issn.1009-7104.2017.03.002
http://dx.doi.org/10.1515/phys-2018-0065
http://dx.doi.org/10.1006/jcph.1996.0082
http://dx.doi.org/10.1016/S0764-4442(99)80185-2
http://dx.doi.org/10.1016/S0764-4442(99)80185-2
http://dx.doi.org/10.1006/jcph.2000.6507
http://dx.doi.org/10.1016/j.jcp.2015.04.001
http://dx.doi.org/10.1016/j.jcp.2016.08.044
http://dx.doi.org/10.1504/IJSISE.2012.046745
http://dx.doi.org/10.1103/PhysRevD.50.6658
http://dx.doi.org/10.1103/PhysRevD.85.045031
http://dx.doi.org/10.1140/epjd/e2008-00142-y
http://10.1109/TMAG.2015.2436439
http://10.1109/TMAG.2015.2436439
http://www.e-periodica.ch/cntmng?pid=hpa-001:1938:11::636
http://dx.doi.org/10.1017/S0022377813000998
http://dx.doi.org/10.1088/0031-8949/86/04/048201
http://dx.doi.org/10.1038/nature07378
http://dx.doi.org/10.1038/nature07378
http://dx.doi.org/10.1038/cdd.2010.112
http://dx.doi.org/10.1038/cdd.2010.112
http://dx.doi.org/10.1155/2015/801037
http://dx.doi.org/10.1063/1.533007
http://dx.doi.org/10.1063/1.533368
http://www.e-periodica.ch/cntmng?pid=hpa-001:1938:11::636
http://www.e-periodica.ch/cntmng?pid=hpa-001:1938:11::643
http://dx.doi.org/10.1088/0256-307X/29/11/111401
http://dx.doi.org/10.1103/PhysRev.130.1625
http://dx.doi.org/10.1103/PhysRevD.83.023514
http://dx.doi.org/10.1143/PTP.16.684
http://www.ptep-online.com/2009/PP-17-03.PDF
http://dx.doi.org/10.4236/jemaa.2013.59055
http://dx.doi.org/10.1088/1742-6596/615/1/012011
http://dx.doi.org/10.4236/jmp.2016.75045
http:///https://doi.org/10.1016/j.rinp.2017.01.009
http:///https://doi.org/10.1142/S021798491750052X
http:///https://doi.org/10.1016/j.physb.2017.08.042
http://dx.doi.org/https://doi.org/10.1016/j.physb.2017.08.042
http://dx.doi.org/10.1070/PU1989v032n06ABEH002727
http://dx.doi.org/10.1103/PhysRevLett.115.231802


49A. Jedele, A. B. McIntosh, K. Hagel, M. Huang, L. Heilborn, Z. Kohley,

L. W. May, E. McCleskey, M. Youngs, A. Zarrella, and S. J. Yennello,

Phys. Rev. Lett. 118, 062501 (2017).
50S. Jezouin, Z. Iftikhar, A. Anthore, F. D. Parmentier, U. Gennser,

A. Cavanna, A. Ouerghi, I. P. Levkivskyi, E. Idrisov, E. V.

Sukhorukov, L. I. Glazman, and F. Pierre, Nature (London) 536,

58 (2016).
51C. Monstein and J. P. Wesley, Europhys. Lett. 59, 514 (2002).
52F. J. Butterworth, C. B. Allison, D. Cavazos, and F. M. Mullen, J. Sci.

Explor. 27, 13 (2013).
53P. W. Graham, J. Mardon, S. Rajendran, and Y. Zhao, Phys. Rev. D 90,

075017 (2014).
54S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in

Communication Electronics (John Wiley & Sons, New York,

1967), pp. 332ff.
55S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory

(Springer, New York, 2001).

56A. D. Polyanin, Handbook of Linear Partial Differential Equations for
Engineers and Scientists (Chapman & Hall/CRC, Boca Raton, FL, 2001).

57P. Swallow, “Practical VHF/UHF antennas,” in The Radio Communication
Handbook, 12th ed. (The Radio Society of Great Britain, London, 2008),

Chap. 16.
58T. Nakatani, J. Rode, D. F. Kimball, L. F. Larson, and P. M. Asbeck, IEEE

J. Solid-State Circ. 47, 1104 (2012).
59C. Capps, Electrical Design News (16 August 2001). pp. 95.
60W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,

2nd ed. (Addison-Wesley, Reading, MA, 1962), pp. 270.
61J. Earman and D. Fraser, Erkenntnis 64, 305 (2006).
62E. Seidewitz, Found. Phys. 47, 355 (2017).
63C. Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill, New

York, 1980).
64J. R. Bray and M. C. Britton, Europhys. Lett. 66, 153 (2004).
65C. Monstein and J. P. Wesley, Europhys. Lett. 66, 155 (2004).
66K. Rebilas, Europhys. Lett. 83, 60007 (2008).

126 Physics Essays 32, 1 (2019)

http://dx.doi.org/10.1103/PhysRevLett.118.062501
http://dx.doi.org/10.1038/nature19072
http://dx.doi.org/10.1209/epl/i2002-00136-9
https://scientificexploration.s3.amazonaws.com/files/jse-27-1.pdf?AWSAccessKeyId=AKIAJXJ6FAXJI7UFHDLQ&hx0026;Expires=1550697317&hx0026;Signature=c23kY1yfbADapqHQygh33HW2X1Y%3D
https://scientificexploration.s3.amazonaws.com/files/jse-27-1.pdf?AWSAccessKeyId=AKIAJXJ6FAXJI7UFHDLQ&hx0026;Expires=1550697317&hx0026;Signature=c23kY1yfbADapqHQygh33HW2X1Y%3D
http://dx.doi.org/10.1103/PhysRevD.90.075017
http://dx.doi.org/10.1109/JSSC.2012.2185554
http://dx.doi.org/10.1109/JSSC.2012.2185554
http://dx.doi.org/10.1007/s10670-005-5814-y
http://dx.doi.org/10.1007/s10701-017-0065-8
http://dx.doi.org/10.1209/epl/i2003-10144-9
http://dx.doi.org/10.1209/epl/i2003-10145-8
http://dx.doi.org/10.1209/0295-5075/83/60007

	s1
	cor1
	s2
	eq1
	eq2
	eq3
	eq4
	eq5
	s3
	eq6
	eq7
	eq8
	eq9
	eq10
	eq11
	eq12
	eq13
	eq14
	eq15a
	eq15b
	s4
	eq16
	eq17
	eq18
	eq19
	eq20
	eq21
	eq22
	s5
	eq23
	eq24
	eq25
	eq26
	s6
	eq27
	eq28
	eq29
	eq30
	eq31
	eq32a
	eq32b
	eq33
	eq34
	eq35
	eq36
	eq37
	eq38
	s7
	eq39
	eq40
	eq41
	eq42
	eq42a
	eq43
	s8
	eq44
	eq45
	s9
	F1
	F2
	F3
	F4
	s10
	F5
	T1
	s11
	APP1
	eqA1
	eqA2
	eqA3
	eqA4
	eqA5
	eqA6
	eqA7
	APP2
	eqB1
	eqB2
	eqB3a
	eqB3b
	eqB4a
	eqB4b
	eqB5
	APP3
	eqC1a
	eqC1b
	eqC2
	eqC3
	eqC4
	eqC5
	eqC6
	eqC7
	eqC8
	APP4
	T2
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	T3
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66

