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Abstract. The motions of a spin-less point-like charged particle predicted by the Landau-
Lifshitz equation and the Hammond method are obtained for a step electric field, a smooth
step electric field and an electromagnetic pulse by using analytical and numerical solutions. In
addition to Hammond method not presenting the so-called constant force paradox, using step
force brings out the apparent physical contradictions of Landau-Lifshitz equation regarding
energy conservation. Nevertheless, a smooth step force shows the consistency of the Landau-
Lifshitz equation. Unlike other cases, the electromagnetic pulse shows another fundamental
difference between the two models. Finally, an analysis of the Hammond method is made.

1. Introduction
In recent years, the Landau-Lifshitz equation [1] [LL] has been considered by many authors as the
best equation, among many others [2], [3], [4] (see also Parrot book [5] and references therein),
to describe the motion of a spin-less point-like charged particle including the radiation reaction
force within the framework of Classical Electrodynamics. Although for some authors [5], the
expression for the LL radiation reaction force is an approximation or a variant of Lorentz-Dirac
equation [6] [LD], for others, it represents an exact one [7], [8], [9], [10], [11], [12], [13]. Being
a second-order differential equation, it does not present solutions with physical anomalies such
as self-accelerations and pre-accelerations that exist in Dirac’s theory. Therefore, using the LL
equation it is not necessary to use the asymptotic conditions required in Dirac’s theory. It should
be noted that in recent years ultrahigh intensity electromagnetic pulses (1022 Wcm−2 [14]) have
been produced making the analysis of the radiation reaction term more important. It has been
shown that for such pulses, different equations as the Eliezer-Ford-O’Connell [15], [16] [EFO] and
LL equations predict the same effects [17], [18]. Moreover, using the LL equation, it is possible
to carry out a deeper study of a relativistic plasma modifying the relativistic Vlasov equation



and obtaining new dispersion relations other than those deduced without considering radiation
reaction term [19]. On the other hand, DeWitt and Brehme [20] obtained a generalization of the
LD equation in General Relativity which was corrected by Hobbs [21] few years later. Moreover,
the corresponding generalization in General Relativity of the LL equation was made by Quinn
and Wald [22]. Also, considering a charged particle with structure, Ford and O’Connell [23],
[16], [24] by using quantum arguments and a Langevin equation, deduced an equation of motion
for the non-relativistic case, known as the Ford equation which can be physically generalized to
Special Relativity giving the Eliezer equation ; that is the EFO equation [15], [16]. Moreover,
Krivitskĭı and Tsytovich [25] shown that the LL radiation reaction term represents an average
radiation reaction force in Quantum Electrodynamics. This last point reinforces the idea that
the LL equation can be taken as the equation that describes the motion of a spin-less point-like
charged particle in Classical Electrodynamics.

Although the LL equation possesses all the physical qualifications to describe the motion of
a charged particle, when the solution is analyzed in the case of a constant electric field it turns
out that the radiation reaction force vanishes [8], [26], [27]. That is: for a constant force, there
is no effect in the motion of the charged particle due to the radiation reaction force and the
charged particle is driven by the Lorentz force. However, DeWitt and Brehme [20] explained
this phenomenon by noticing that the radiation exits at the infinite; that is, the energy radiated
to infinite is taken from the attached fields (The Scott term or the acceleration energy) and
consequently even if the total radiation reaction term in the equation of motion vanishes, the
radiation to infinite (the irreversible emission of radiation) exists. This has been calculated
and proven by Ares de Parga [12]. However, this explanation is not accepted by many authors
[28], [29] and they have reached the conclusion that the rest mass of the charge is not conserved.
Moreover, Sorkin [30] says that this phenomenon raises a paradox which we will call the constant
electric field paradox. Recently, Hammond [31], [32], [33], [34], [35], [36], [37], proposed a new
method which avoids this paradox. This method consists of searching an expression for the
radiation reaction force for each applied force to the charge and it is solved in many cases by
using an iteration model of equations which gives a result at first order in τo = 2q2/3mc3 (the
characteristic time of the charge). The results practically coincides with the solutions of the LL
and EFO equations in many cases. Indeed, if we make a comparison of the solutions of both,
the LL equation and the Hammond method, for the constant magnetic field [38], [32], [33], for
the central field [39] and for the low energy electromagnetic pulses, we notice that within the
approximations made for the levels of energy where the damping force is important, the results
are similar. However, Hammond [35] claims that for ultrahigh intensity electromagnetic pulses
the differences between the motions predicted by the EFO equation, the LL equation and the
H method are important. Such differences appear within the Shen’s zone [40] where quantum
effects are not important and an equation of motion is meaningful for a physical description.
Moreover, Hammond argues that the results obtained by using LL equation do not accomplish
a balance of energy [35]. In counterpart, the LL and the EFO equations are founded in different
expressions for the radiated energy at the infinite; that is: the Larmor formula does not represent
the radiation power at the infinite in these theories [12], [13].

It has to be noticed that the Lawson-Woodward theorem [41], [42] states, if radiation reaction
is excluded, the particle gains no net momentum from the pulse. This happens when we consider
the Lorentz solution. We will expect that when the radiation reaction force is included in any of
the different equations that we are dealing with, a gain of energy must appear, particularly in
the direction of the pulse. This represents the reason to study the effects of the different reaction
terms when an ultrahigh intensity electromagnetic pulse is applied.

Although in many cases the solutions of Hammond method and those of LL equation coincide,
in the cases of the constant electric field (including the step and the smooth step electric field)
and the ultrahigh intensity electromagnetic pulse, there are differences. Indeed, we will see in this



article that solving both methods in the two mentioned cases such differences appear. However,
such differences differ from those described by Hammond. The purpose of this article consists of
showing that the Landau-Lifshitz equation represents the better equation to describe the motion
of a spin-less point-like charged particle in Classical Electrodynamics.

The article is organized as follows. In section 2, By using the LL equation, the constant
electric field paradox is described. The Hammond method is exposed and the result obtained by
applying it to the constant electric field is compared with the ones obtained for the same case
from the L and LL equations. In section 3, the results obtained for the step electric field case by
using the L and the LL equations, and the H method, are compared. Since, a step electric field
is not physically acceptable, the same calculations and comparisons are made for the smooth
step electric field. In section 4, the electromagnetic pulse case is analyzed for the L equation,
for the LL equation, for a proposed Lorentz-Dirac-Hammond equation [LDH] and the Hammond
approximation equation [HA]. The technique used by Hammond for obtaining the numerical
solution of the LL equation in the case of the ultrahigh intensity electromagnetic pulse is also
analyzed and compared with our result. In section 5, a discussion is made about the pros and
cons of the two theories showing the inherent defect of Hammond’s method. Some concluding
remarks are made in section 6.

2. The Constant Electric Field Paradox and the Hammond Method
The constant electric paradox consists of having a vanishing radiation reaction term in the
equation of motion of a spin-less point-like charged particle when a constant electric field or
constant force is applied to the charge. These happens when we deal with the LD, the EFO or
the LL equations.

2.1. The Landau-Lifshitz Equation and the Constant Electric Field Paradox
Since we are interested in comparing the LL equation with the H method, let us begin by
expressing the LL equation [1]:

maµ = (q/c)Fµνwν

+τo

[
q

c
(
∂Fµν

∂xα
wαwν − (q/cm)FµνFαww

α) + (q2/c4m)F 2wµ
]
. (1)

By defining [19],
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, (2)

we obtain
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e
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e

mc

[
e

mc
FναF

αβwβ + wρwα
∂Fνα
∂xρ

]
. (3)

With this expression of the LL equation, it is easy to show that the radiation reaction term
vanishes when we applied a constant electric field. Consider the radiation reaction term for a
constant electric field E,
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= (nµν − wµwν

c2
)×
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[Fνα]

[
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]
= E2wµ

(
1− c2

c2

)
= 0. (5)

Therefore, for the constant electric force, the LL equation is equivalent to the L equation of
motion and there is no effect on the motion of the charge due to the radiation reaction force.
Notice that this does not mean that the charge does not radiate. It means that the radiated
energy to the infinity is taken from the attached fields [12], [26], [20].

In order to make the comparison with the H method, let us deduce the solution of this case.
If we consider the electric field in the x1 direction, the L and LL equations turn to be

dw0

dτ
=

eE

mc
w1 = Ωw1

dw1

dτ
=

eE

mc
w0 = Ωw0, (6)

where Ω = eE
mc . If we impose the initial conditions for the 4−velocity, w0 = c and w1 = 0, the

well-known solutions are:

w0 = c cosh Ωτ

w1 = c sinh Ωτ. (7)

These solutions are described in figures (1) and (2).

2.2. The Hammond Method
The constant force paradox encouraged Hammond to develop a theory which avoids it [31], [32],
[33], [34], [35], [36]. He began by proposing an equation of this type

dwµ

dτ
=

e

mc
Fµσwσ + fµ, (8)

where the radiation reaction force fµ is described by

fµ = φ,µ − wµ

c2

đφ
dτ

with f0 = w0P/c (9)

This system of equations, Eqs. (8) and (9), represents a complete set of equations to determine
the motion of the charge. It has to be pointed out that đ does not represent an exact differential
as it happens with the heat in Thermodynamics. This point represents a correction to Hammond
theory. Indeed, we will see that φ = φ(xµ, wµ) and therefore, there is a difference between đφ/dτ
and dφdτ ; that is:

đφ
dτ

=
∂φ

∂xµ
wµ and

dφ

dτ
=

∂φ

∂xµ
wµ +

∂φ

∂wµ
aµ. (10)

Physically, this is consistent with the fact that non exact differentials are always connected with
no reversible processes as the radiation. The fact that φ has to be deduced for each applied
force to the charge implies that there is no a H equation of motion but a H method to obtain an
equation of motion for each case. Then,

aµ =
dwµ

dτ
=

e

mc
Fµσwσ +

1

m
φ,µ − wµ

c2m

đφ
dτ
. (11)



Following Hammond [36] but including our correction, we arrive at:

P =
đφ
dτ

=
∂φ

∂xµ
wµ with P = −τoma2 = −τomaµaµ. (12)

Then,

đφ = Pdτ = −τomaµaµdτ = −τom
dwµ
dτ

dwµ

dτ
dτ. (13)

2.2.1. Constant electric field in the x1 direction within Hammond theory
In order to analyze the constant electric field case in the x1 direction and to be able to solve

Eq. (11) it is necessary to make the following approximation (first order in τo): The Lorentz
acceleration is taken to evaluate P ; that is:
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Therefore,
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Knowing that,

dτ =
dt

γ
, (16)
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By using Eqs. (13) y (17), we have
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e2

m
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P
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On the other hand,
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This result used in Eq. (11) permits to check the balance of energy. It has to be remembered
that

φ,0 =
∂φ

∂x0
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P
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γcm
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e2
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E2, (20)



and consequently φ = φ(xµ, w0) and in general φ = φ(xµ, wµ). Had we used dφ, we would have
obtained

wµ

(
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c2

dφ

dτ

)
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µ
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Hence, the balance of energy would not be satisfied. Therefore, we must use đφ. Finally, the
radiation reaction term depends on the trajectory as it is expected.

We are able to express the equations of motion for the constant electric field; that is:
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We obtain
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γ
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where γ̇ = dγ/dτ .
For x1, we arrive at
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That is, by using Ω = eE/mc,
dw1

dτ
= Ωw0 − τoΩ2w1. (25)

Let us propose
wµ = uµ + τov

µ. (26)

Therefore, Eq. (25) can be written as
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1
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On the other hand, developing the identity wµwµ = c2,
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0 + w1w

1
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(
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0
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(
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By identifying the coefficients of τ0 and τ2
0 , we obtain

u0v
0 + u1v

1 = 0, v0v
0 + v1v
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Therefore,

v1 = −u0v
0

u1
=
u0v0

u1
, (29)

(v0)2 = −v1v
1 = (v1)2. (30)

These identities will be used later in order to deduce v0 in terms of v1, u0 and u1. Then, from
Eq. (25), neglecting the terms of order τ2

o , we have

d
(
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)
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)
− τoΩ2
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)
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Identifying the terms depending on τo or not, we obtain

du1

dτ
= Ωu0 and

dv1

dτ
= Ωv0 − Ω2u1. (32)

Now, we need to obtain w0. By using Eq. (22) and by substituting P from Eq. (18), we have

dw0
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2
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c
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)
. (33)

By using Eq. (26) into Ec. (33), with w0 = u0 + τov
0 , we have
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Therefore,
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dτ
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)
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From Eq. (32) and (35), we can obtain the solution for uµ; that is:

du0

dτ
= Ωux ⇒ u0 = c cosh Ωτ and

dux

dτ
= Ωu0 ⇒ u1 = c sinh Ωτ. (36)

Therefore,
dv1

dτ
− Ωv0 = −cΩ2 sinh Ωτ. (37)

Then, we need to express v0 in order to solve the last equation. From Eq. (29), we have

v0 =
u1

u0
v1. (38)

Then,
dv1

dτ
− Ω

u1

u0
v1 = −cΩ2 sinh Ωτ. (39)



By using Eq. (36), we arrive at

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ. (40)

The solution is

v1 = cτ0Ω cosh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
. (41)

Finally, the solution for w1 is:

w1 = c sinh Ωτ + τ0v
1

= c sinh Ωτ + cτ0Ω cosh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
(42)

For solving w0, instead of solving directly Eq. (35), from Eq. (38), we can deduce

v0 =
u1

u0
v1 = tanh (Ωτ) v1 = cΩ sinh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
(43)

Finally,

w0 = c cosh Ωτ + cτ0Ω sinh Ωτ

(
Ωτ − ln

(
1 + e2Ωτ

2

))
. (44)

These solutions are described in figures (1) and (2).

2.3. Comparison between the Solutions of the L and LL Equations and the Hammond Method
for the Constant Electric Field

As we have noticed, the solutions of the L and LL equations for the constant electric field coincide.
However, by using H method, in this case, the solution is different from the L and LL solutions
since a loss of energy appears in the H one. This loss of energy which eliminates the constant
electric field paradox can be seen in figures (1) and (2). Apparently, this effect given by using
the H method justified the use of it to the detriment of the ideas of many authors that consider
that the term in the LL equation due to the attached fields (the Scott term) is the responsible
of eliminating the radiation term in the LL equation [12], [26], [20].
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Figure 1. Comparison of w1 between the L, the LL, and the H solutions for the constant electric
field: L and LL in blue and H in red; Ω = 1 and τ0 = 0.1 to show the effects.
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Figure 2. Comparison of w0 between the L, the LL and the H solutions for the constant electric
field: L and LL in blue and H in red; Ω = 1 and τ0 = 0.1 to show the effects.

3. Step and Smooth Step Electric Field for the Lorentz, the Landau-Lifshitz
Equations and the Hammond Method
The step electric field in reality does not represent a physical attainable field, as the constant
field. However, the comparison between the solutions for the L and LL equations, and for the H



method, for the step electric field, permits us to understand the differences between them. Of
course, a smooth step electric field should be considered later to analyze a physical situation.

3.1. The Step Electric field for the Lorentz and Landau-Lifshitz equations and the Hammond
method
Let us start by considering an electric field in the x1 direction that behaves like a step function;
that is:

E =

{
0 for τ < 0
Eo for τ ≥ 0

}
= EoH (τ) . (45)

3.1.1. The solutions for the Lorentz equation with a step electric field
The solutions for the L equation are simple and have to be obtained for two cases:

1◦ case, τ < 0.
The solution is

w1 = 0 and w0 = c (46)

2◦ case, τ ≥ 0.
The solution is

w1 = c sinh Ω0τ and w0 = c cosh Ω0τ, (47)

with Ω0 = eE/mc. These solutions are described in figures (3) and (4).

3.1.2. The solutions for the Landau-Lifshitz equation with a step electric field
The component LL equations, Eq. (3), for the step electric field, Eq. (45), are: for w1

dw1

dτ
= Ω0H(τ)w0

+τoΩ0

[
δ(τ)w0 +H(τ)

dw0

dτ

]
+τoΩ

2
0H(τ)2w1, (48)

and for w0,

dw0

dτ
= Ω0H(τ)w1

+τoΩ0

[
δ(τ)w1 +H(τ)

dw1

dτ

]
+τoΩ

2
0H(τ)2w0. (49)

Let us propose a general solution of the type:

w1 = c sinh Ψ and w0 = c cosh Ψ, (50)

where Ψ = Ψ(τ). Introducing Eq. (50) into Eqs. (48) and (49), we obtain:

Ψ̇ = Ω0(H(τ)) + τoΩ0(δ(τ)), (51)

which coincides with the result found by Baylis and Huschilt [43] for the LL equation. After a
simple integration, considering the initial conditions, we arrive to:

Ψ =

{
0 for τ < 0
Ω0τ + Ω0τo for τ ≥ 0

}
(52)



Therefore, we have two cases:
1◦ case, τ < 0

The solutions are
w1 = 0 and w0 = c (53)

2◦ case, τ ≥ 0
The solutions are

w1 = c sinh (Ω0 (τ + τ0)) and w0 = c cosh (Ω0 (τ + τ0)) (54)

These solutions are described in figures (3) and (4).

3.1.3. The solutions for the Hammond method with a step electric field
We must now obtain the motion of a charge within Hammond theory in the case of a step

electric field in x1 direction. Therefore, we use the electric field described in Eq. (45). Eq. (40)
is still valid

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ, (55)

but with a different Ω,

Ω =

{
0 for τ < 0

eEo
cm = Ω0 for τ ≥ 0

(56)

The problem can be divided in two cases:
1◦ case, τ < 0⇒ Ω = 0

Then, Eq. (40) can be written as
dv1

dτ
= 0. (57)

Hence,
dw1

dτ
= 0⇒ w1 = 0. (58)

2◦ case, τ ≥ 0⇒ Ω = eEo
cm = Ω0

First,
u1 = c sinh Ω0τ (59)

and for v1

dv1

dτ
− Ω tanh (Ωτ) v1 = −cΩ2 sinh Ωτ, (60)

The solution for v1 is:

v1 = cτ0Ω0 cosh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
. (61)

Then,

w1 = c sinh Ω0τ + τ0v
1

= c sinh Ω0τ + cτ0Ω0 cosh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
. (62)

Following the same method, we obtain

w0 = c cosh Ω0τ + cτ0Ω0 sinh Ω0τ

(
Ω0τ − ln

(
1 + e2Ω0τ

2

))
. (63)

These solutions are described in figures (3) and (4).



3.1.4. Comparison between the solutions of the L and LL equations and the Hammond method
for the step electric field
In figures (3) and (4), it is shown that there is a loss of energy in the H method which

corresponds to the Hammond’s aims about the radiation reaction force. On the contrary, the
solution of the LL equation presents a suddenly gain of energy. These two different results
represent one of the controversies between the LL equation and the H method. However, being
the step electric field a nonphysical field due to its discontinuity, the discussion about which is
the best option is somewhat disqualified. Accordingly, we need to compare the results by using
a physical field. This field can be expressed by a smooth step electric field which is physically
possible.
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Figure 3. Comparison of w1 between the L and the LL, and the H solutions for the step electric
field: L in blue, LL in green and H in red; Ω0 = 1 and τ0 = 0.1 to show the effects.
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Figure 4. Comparison of w0 between the L and the LL, and the H solutions for the step electric
field: L in blue, LL in green and H in red; Ω0 = 1 and τ0 = 0.1 to show the effects.



3.2. The Smooth Step Electric Field for the Lorentz and Landau-Lifshitz Equations and the
Hammond Method
Let us use a smooth step electric field which represents a physical situation and it can be
represented by

EE, (64)

where E is a constant vector in the x1 direction related with the intensity of the electric field
and E is

E =
1

2

(
1 + tanh

(
τ

T

))
. (65)

Notice that when T → 0, the step electric field is obtained as a limit. However, in this case we
will consider T = 1 in order to use a clearly smooth step electric field (see figure (5)).
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Figure 5. Smooth step function E with T = 1
.

3.2.1. The solutions for the Lorentz equation with a smooth step electric field
The equations of motion by using the L equation in the case of a smooth step electric field

and putting Ω = eE
mc are:

dw0

dτ
= ΩEw1,

dw1

dτ
= ΩEw0. (66)

By following the algebra done by Hammond [33] and by considering the initial conditions as
x1(−∞) = 0 and w1(−∞) = 0, the results are

w0 =
c

2
√

2

e−Ωτ/2
(
e2Ωτ + 2

)
√

cosh Ωτ
, (67)

and

w1 =
c

2
√

2

e
3
2

Ωτ

√
cosh Ωτ

. (68)

These solutions are described in figure (6).
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Figure 6. w0 and w1 for the smooth step electric field are shown with T = 1: L in blue, LL in
green and H in red; the smooth step electric field is in violet; Ω0 = 1 and τ0 = 0.1 to show the
effects.

3.2.2. The solutions for the Landau-Lifshitz equation with a smooth step electric field
The LL equation in the case of a smooth step electric field is (with Ω = eE

mc)

dw0

dτ
= ΩEw1 + τ0Ω

dE
dτ
w1,

dw1

dτ
= ΩEw0 + τ0Ω

dE
dτ
w0, (69)

We solve these equations by using Wolfram Mathematica and the solutions are described in figure
(6).

3.2.3. The solutions by using the Hammond method with a smooth step electric field
By applying the Hammond method [33] which consists o putting

wµ = uµ + τov
µ, (70)

Hammond obtained that uµ coincides with the solution of the L equation, Eqs. (67) and (68),
as it is expected. The solutions for v0 and v1 are

v0 =
cΩe3Ωτ/2

8 (e2Ωτ + 1)3/2√cosh Ωτ

 eΩτ/2
(
e2Ωτ + 1

)√
cosh Ωτ (1− ln (4))

+
√

2
((
e2Ωτ + 1

)
ln
(
e2Ωτ + 1

)
− 1

)√
e2Ωτ + 1

 , (71)

and

v1 =
cΩe−Ωτ/2

(
e2Ωτ + 2

)
8 (e2τ + 1)3/2

√
cosh τ

 eΩτ/2
(
e2Ωτ + 1

)√
cosh Ωτ (1− ln (4))

+
√

2
((
e2Ωτ + 1

)
ln
(
e2Ωτ + 1

)
− 1

)√
e2Ωτ + 1

 . (72)

These solutions are described in figure (6).

3.2.4. Comparison between the solutions of the Lorentz and Landau-Lifshitz equations and the
Hammond method for the smooth step electric field
In figures (6), it is shown that there is also a loss of energy in the H method which corresponds

to the Hammond’s aims about the radiation reaction force as happens in the case of the step
electric field. On the contrary, the solution of the LL equation presents a gain of energy but,
unlike the previous case, there is no discontinuity. This allows us to see the discrepancy between
the LL equation and H method. The loss and gain of energies depending on the chosen equation
exemplifies the differences between both theories. This will be discussed after analyzing the
electromagnetic pulse case for both theories.



4. The Electromagnetic Pulse by using the Lorentz and Landau-Lifshitz Equations,
and the Hammond Method
The study of the electromagnetic waves in electrodynamics is fundamental. Above all, many
physical effects are explained by analyzing the motion of charged particles subjected to an
electromagnetic pulse. Let us now consider a polarized electromagnetic pulse, in the x direction
(x = x1); that is:

−→
E = Ehx̂, (73)

where E is a constant and h = h(z − t/c). The corresponding magnetic field is:
−→
B = Ehŷ, (74)

Following Hammond [33], by making the following scale transformations xµ → xµ/L, t → tc/L
with L = λ/2π (note that L and λ are not related with the wavelength of the pulse). We will
call this scale transformation as the dimensionless convention. h can be expressed as

h =
1

w
e−((z−t)/w)2 cos (Ω (z − t)) . (75)

where w is a dimensionless parameter that controls the width of the Gaussian and Ω is a
dimensionless parameter controlling the frequency. Notice that Hammond [35] chose w = 2π/Ω
in order to maintain an envelope containing a few wavelengths. We will use other parameters
by putting λ = 5, Ω = 0.1, w = 2λ/Ω, with an average intensity I = 1022 Wcm−2 where
E = (8πI/c)−1/2/w. All the solutions described in figures (7), (8), (9), (10), (11), (12) and (13)
are described by using these ultrahigh intensity electromagnetic pulse.

4.1. The Electromagnetic Pulse by using the Lorentz Equation
Let us begin by solving the L equation for such electromagnetic pulse and the above dimensionless
convention. Let us put a = eE

mc , then the L equation can be written as

dw0

dτ
= ahw1,

dw1

dτ
= ah

(
w0 − w3

)
,

dw2

dτ
= 0, (76)

dw3

dτ
= ahw1.

Then
dw0

dτ
=
dw3

dτ
(77)

Integrating from τ = −∞ to τ , we arrive at

w0 (τ)− w0 (−∞) = w3 (τ)− w3 (−∞) . (78)

By putting the initial conditions as w0(−∞) = 1 and w1(−∞) = w2(−∞) = w3(−∞) = 0, we
arrive at

w0 (τ) = 1 + w3 (τ) . (79)

Integrating from τ = −∞ to τ and using the initial conditions, x0(−∞) = −∞ = τ(−∞) and
x1(−∞) = x2(−∞) = x3(−∞) = 0, we obtain

τ = t− z, (80)



which represents an important result. Then, we can write

h =
1

w
e−(τ/w)2 cos (Ωτ) . (81)

The solutions are

w0 = 1 + a2E2, w1 = aE ,
w2 = 0, w3 = a2E2, (82)

where,

E(τ) =

∫ τ/w

−∞
e−ζ

2
cos (2Λζ) dζ, (83)

with ζ = τ/w and 2Λ = wΩ. The solutions of these equations are described in figures (7), (8),
(9), (10) and (11).
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Figure 7. w0 for the electromagnetic pulse: L in blue, HLD in red and LL in green.
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Figure 8. Close-up of the interval (150, 250), w0 for the electromagnetic pulse: L in blue, HLD
in red and LL in green.



4.2. The Electromagnetic Pulse by using Landau-Lifshitz Equation
For the same electromagnetic pulse with the dimensionless convention and using as a good
approximation Eq. (80), the LL equations are

dw0

dτ
= a

(
h+ τ0ḣ

)
w1 + τ0a

2h2(w0 − w3)(1− w0(w0 − w1)),

dw1

dτ
= a

(
h+ τ0ḣ

)
(wo − w3)− τ0a

2h2(w0 − w3)2w1,

dw2

dτ
= −τ0a

2h2(w0 − w3)2w2, (84)

dw3

dτ
= a

(
h+ τ0ḣ

)
w1 + τ0a

2h2(w0 − w3)(1− w3(w0 − w1)).

The solutions of these equations are obtained by using Wolfram Mathematica and they are
described in figures (7), (8), (9), (10), (11) and (13).
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Figure 9. w1 for the electromagnetic pulse: L in blue, HLD in red and LL in green.

4.3. The Electromagnetic Pulse by using the Hammond Method
For the same pulse, Hammond first use a variation of the LD equation [32] that we will call it
the Hammond-Lorentz-Dirac equation [HLD] and consists of using the following equation:

dwσ

dτ
= aF σµwµ + τo

[
d

dτ
(aF σµwµ) + (ẇµẇµ)wσ

]
+O(τ2

o ), (85)

Notice that this equation does not accomplish the balance of energy and a a consequence some
nonphysical results at first order in τo can appear. This can be noticed in figure 8 where the
energy is less than c (less than one in the figure due to the dimensionless convention) in some
parts. By using Eq. (80) and the dimensionless convention, the HLD equations are:

dw0

dτ
= ahw1 + τoa

2ḣE − τo
a4h2E2

2
,

dw1

dτ
= ah(w0 − w3) + τoaḣ− τoa3h2E ,



dw2

dτ
= 0, (86)

dw3

dτ
= ahw1 + τoa

2ḣE + τoa
2h2 − τo

a4h2E2

2
,

-100 -50 50 100

τ

0.5

1.0

1.5

w
3

Figure 10. w3 for the electromagnetic pulse: L in blue, HLD in red and LL in green. Notice
that due to the initial conditions w2 = 0.
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Figure 11. Close-up of the interval (150,250), w3 for the electromagnetic pulse: L in blue, HLD
in red and LL in green.

4.4. Hammond Approximation for an Ultrahigh Intensity Electromagnetic Pulse
Finally, Hammond [35] applied his method for the same pulse using Eq.(80) and the dimensionless
convention but making the following approximation for an ultrahigh intensity electromagnetic
pulse,

φ,µ <<
wµ

c2

đφ
dτ
. (87)

Hammond obtain an equation by using Eq. (8) but with

fµ = −w
µ

c2

đφ
dτ
, (88)



since he consider that
φ,µ ' 0. (89)

The equation of motion turns to be

dw0

dτ
= aF 0µwµ + τo (ẇµẇµ)w0,

dwi

dτ
= aF iµwµ −

wi

c2

đφ
dτ
, (90)

which can be called the Hammond approximated equation for ultrahigh intensity electromagnetic
pulses [HA]. This is similar to the assumption done by Shen [40] for the LD equation by neglecting
the Schott term. Nevertheless, although he obtained a similar result to the one obtained by using
the HLD method, Hammond’s results show differences with what he gets with the LL equation
and the EFO equation (see figure 2 in reference [35]. The most important difference in the
results obtained by Hammond [35] is the final z component of the velocity. Moreover, due to the
unphysical runaways solutions, Hammond claimed that for this reason alone one may conclude
that the LAD equation is incorrect, but it was shown that this arises from a deeper problem,
explicitly, nonconservation of energy. Since the LL and EFO equations may be derived from the
LAD equation, we should not expect them to be exact. Contrary to what Hammond [35] assures,
those that fulfill the conservation of energy are the L, LL and EFO equations because they are
based in Dirac’s assumption of the conservation of the energy, where the Schott term appears in
a natural way and those that do not comply with the conservation of energy are the HLD and
HA equations. Moreover, the energy balance is accomplished by the L, the LL and the EFO
equations and the H method. But in the cases of the HLD and the HA the energy balance is
not accomplished as has been shown graphically in figure (8), Indeed, in general, it can be seen
that the LDH and HA equations do not satisfy the energy balance simply multiplying them by
wµ. However, as we can see, our results obtained by using the LL equation, figure (11), shows
that the difference are not such. Hammond managed the LL equation to obtain the numerical
solution of the LL equation in the case of the ultrahigh intensity electromagnetic pulse in his
article [35] but our result is obtained by directly using the LL equation and accordingly, the
result is similar to LDH and HA one’s.

Let us describe how Hammond solve the LL equation. He starts by neglecting the
corresponding Schott term in the LL equation such that he obtains the following Landau-Lifshitz-
Hammond equation for an ultrahigh intensity electromagnetic pulse [LLH]; that is:

dwµ

dτ
= Fµσvσ + τo(

dwµ

dτ

dwµ
dτ

)wµ, (91)

and he used the Eqs. (73), (74) y (75), with a = eEh
mc . By using Eq. (80) and the dimensionless

convention Eq. (91) maybe described by

dw0

dτ
= ahw1 + τo(

dwµ

dτ

dwµ
dτ

)w0,

dw1

dτ
= ah

(
w0 − w3

)
+ τo(

dwµ

dτ

dwµ
dτ

)w1,

dw2

dτ
= 0 + τo(

dwµ

dτ

dwµ
dτ

)w2, (92)

dw3

dτ
= ahwx + τo(

dwµ

dτ

dwµ
dτ

)w3.

In order to solve this equation, it is necessary to use the following approximation,

dwµ

dτ

dwµ
dτ

=
duµ

dτ

duµ
dτ

, (93)



where wµ = uµ + τov
µ and by using Eq. (92 ), we obtain

dwµ

dτ

dwµ
dτ

= a2h2
(
w1
)2
− a2h2(w0 − w3)2 − a2h2

(
w1
)2
. (94)

Simplifying,
dwµ

dτ

dwµ
dτ

= −a2h2(w0 − w1)2, (95)

By using Eqs (82) and (83), we have

dwµ

dτ

dwµ
dτ

= −a2h2
(

1 +
1

2
a2h2 − 1

2
a2h2

)2

= −a2h2, (96)

and substituting in Eq. (92), we obtain

dw0

dτ
= ahwx − τoa2h2w0,

dwx
dτ

= ah (w0 − wz)− τoa2h2w1,

dwy
dτ

= −τoa2h2w2, (97)

dwz
dτ

= ahwx − τoa2h2w3.

The solutions of these equations are shown in figures (12) and (13), and it can be seen that
it corresponds to the Hammond solution of the LL equation in reference [35] which does not
corresponds to the real LL solution.
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Figure 12. The solutions of wµ for an ultrahigh intensity electromagnetic pulse by using the
LLH equation.
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Figure 13. Comparison of the solutions wµ for an ultrahigh intensity electromagnetic pulse for
the different equations; L in blue, HLD and HA in red, LL in green and LLH in violet.

5. Discussion
Hammond [35] compared the EFO, the LL and HA (LDH is similar) results obtaining that for
ultrahigh intensity pulses it is possible to experimentally measure the gain of net energy predicted
by the Hammond theory described by analyzing the final w3 components of each case (see figure
(2) in [35]). It has to be noticed that the Lawson-Woodward theorem states: if radiation reaction
is excluded, the particle gains no net momentum from the pulse. This happens when we consider
the L solution. He claims that the gain of energy just happens when the LDH and the HA
equations are considered. However, it has to be highlighted that the LL solutions (obtained by
directly solving the LL equation) are very similar to LDH and HA solutions and there is also
a gain of energy in z direction. However, the LDH and the HA equations do not satisfied the
balance of energy and they did not come from a conservation of energy theories, neither the
Hammond method unlike the LD, the LL and the EFO equations. Hammond did not obtain a
correct descriptions of the LL and EFO solutions by using the LLH and a similar variation of
the EFO by neglecting the Schott term.

For the constant magnetic field, it has been proved that the decay time and trajectories are
similar for the Hammond theory [35] and the LL [38]; that is: tdecay ∝ 1/τow

2. For the central
field case, it has been shown that the Hammond method and the LL equation are equivalent [39].

6. Concluding Remarks
We can conclude that the big difference between Hammond method and the LL equation consists
of a gain of energy that is sometimes present in the LL equation as happens in the cases of the
constant electric field and of the step or smooth step electric field. However, it is all based
on Hammond disregarding for the origin of the Schott term which comes from the field itself
generated in the vicinity of the charged particle (the attached fields). In truth, this term causes
that in some cases the particle gains kinetic energy but always keeping the energy balance. Do
not forget that the conservation of the energy must consider the energy of the particle and the
energy of the field. The balance of energy must be accomplished in each equation of motion and



it only means that the energy generated is equal to the power, maµwµ = Fµwµ = 0, which are
not satisfied in the LDH, the HA and LLH equations

The apparent constant force paradox is explained by other authors by noticing that the
radiation exits at the infinity; that is, the energy radiated to infinity is taken from the attached
fields (the Schott term or the acceleration energy) and consequently even if the total radiation
term in the equation of motion vanishes, the radiation to the infinity (the irreversible emission
of radiation) exists. Moreover, by using similar arguments, DeWitt and Brehme explain this
phenomenon in his generalization to General Relativity of the damping term [20].

Moreover, a Landau-Lifshitz-like equation [22] in General Relativity has been proposed
supporting the validity of the Landau-Lifshitz equation in Special Relativity. Finally, and perhaps
the most important argument to support the LL equation has been done by Krivitskĭı et al [25]
by showing that the radiation reaction term represents an average radiation reaction force in
Quantum Electrodynamics.
Finally, we can conclude that the LL equation of motion for a spin-less point-like charged particle
represents the best proposal to describe the motion of such particles in Classical Electrodynamics.
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